Temperature stability for silicon-based photonic band-gap structures

A method for minimizing thermal effects on silicon-based photonic band-gap (PBG) structures is demonstrated. The reflectance resonance positions of as-anodized one-dimensional porous silicon (PSi) PBG microcavities exhibit 3 nm redshifts when heated up to 100 °C, which significantly alters the light propagation properties of the structures. By carefully controlling the oxidation conditions of the PSi microcavities, it is possible to reduce the shift to less than 0.5 nm. High-resolution x-ray diffraction experiments directly link variations of the silicon strain during heating to shifts of the reflectance resonance. The pressure change induced by the proper oxidation level can compensate for the effect of the temperature change and, thus, stabilize the resonance position.

[1]  Philippe M. Fauchet,et al.  Dynamic etching of silicon for broadband antireflection applications , 2002 .

[2]  M. Fox Optical Properties of Solids , 2010 .

[3]  Kurt Busch,et al.  Silicon‐Based Photonic Crystals , 2001 .

[4]  John D. O'Brien,et al.  Operation of photonic crystal membrane lasers above room temperature , 2002 .

[5]  Philippe M. Fauchet,et al.  Porous silicon multilayer structures: A photonic band gap analysis , 2002 .

[6]  D. Buttard,et al.  Porous silicon strain during in situ ultrahigh vacuum thermal annealing , 1999 .

[7]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[8]  Neil Savage,et al.  Linking with light [high-speed optical interconnects] , 2002 .

[9]  Hiroshi Sugiyama,et al.  Microstructure and lattice distortion of anodized porous silicon layers , 1990 .

[10]  Steven G. Johnson,et al.  Demonstration of highly efficient waveguiding in a photonic crystal slab at x=1.5{micro}m wavelengths , 2000 .

[11]  Maurizio Esposito Montefusco,et al.  Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models , 2000 .

[12]  Philippe M. Fauchet,et al.  Electrically tunable porous silicon active mirrors , 2003 .

[13]  M. Nicolet,et al.  Strain in porous Si formed on a Si (100) substrate , 1990 .

[14]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[15]  D. Bellet,et al.  X‐ray‐diffraction investigation of the anodic oxidation of porous silicon , 1996 .

[16]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[17]  Gilles Lerondel,et al.  Optical microcavities with subnanometer linewidths based on porous silicon , 2002 .

[18]  Paul A Snow,et al.  The Effect of Thermal Processing on Multilayer Porous Silicon Microcavity , 2000 .

[19]  Philippe M. Fauchet,et al.  Erbium emission from porous silicon one-dimensional photonic band gap structures , 2000 .

[20]  K. Barla,et al.  Determination of lattice parameter and elastic properties of porous silicon by X-ray diffraction , 1984 .

[21]  W. Theiß,et al.  Optical properties of porous silicon , 1997 .

[22]  K. D. Hirschman,et al.  Silicon-based visible light-emitting devices integrated into microelectronic circuits , 1996, Nature.

[23]  I. M. Young,et al.  X‐ray double crystal diffraction study of porous silicon , 1985 .

[24]  Philippe M. Fauchet,et al.  Electrically tunable silicon-based mirrors , 2002, SPIE OPTO.

[25]  Han-Su Kim,et al.  Effective method for stress reduction in thick porous silicon films , 2002 .