Seismic data reconstruction via fast projection onto convex sets in the seislet transform domain

According to the compressive sensing (CS) theory in the signal-processing field, we proposed a new seismic data reconstruction approach based on a fast projection onto convex sets (POCS) algorithm with sparsity constraint in the seislet transform domain. The FPOCS can obtain much faster convergence than conventional POCS (about two thirds of conventional iterations can be saved) . The seislet transform based reconstruction approach can achieve obviously better data recovery results than f − k transform based scenarios, considering both signal-to-noise ratio (SNR) and visual observation, because of a much sparser structure in the seislet transform domain. Both synthetic and field data examples demonstrate the performance of the proposed approach.

[1]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[2]  Mauricio D. Sacchi,et al.  Accurate interpolation with high-resolution time-variant Radon transforms , 2002 .

[3]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[4]  Jingwei Hu,et al.  Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization , 2014 .

[5]  Mauricio D. Sacchi,et al.  Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data , 2010 .

[6]  Ray Abma,et al.  Comparisons of interpolation methods , 2005 .

[7]  Yangkang Chen,et al.  Irregular seismic data reconstruction using a percentile-half-thresholding algorithm , 2014 .

[8]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[9]  Charles C. Mosher,et al.  Marine Towed Streamer Data Reconstruction Based on Compressive Sensing , 2013 .

[10]  Sergey Fomel,et al.  Predictive painting of 3D seismic volumes , 2010 .

[11]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[12]  Chengbo Li,et al.  Interpolated Compressive Sensing for Seismic Data Reconstruction , 2012 .

[13]  Juefu Wang,et al.  Seismic data interpolation by greedy local Radon transform , 2010 .

[14]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[15]  Felix J. Herrmann,et al.  Randomized sampling and sparsity: Getting more information from fewer samples , 2010 .

[16]  R. Abma,et al.  3D interpolation of irregular data with a POCS algorithm , 2006 .

[17]  Jianwei Ma,et al.  Seismic data restoration via data-driven tight frame , 2014 .

[18]  Mauricio D. Sacchi,et al.  Minimum weighted norm interpolation of seismic records , 2004 .

[19]  Yangkang Chen,et al.  Time-Frequency Analysis of Seismic Data Using Synchrosqueezing Wavelet Transform , 2014 .