Predicting glaucomatous visual field deterioration through short multivariate time series modelling

In bio-medical domains there are many applications involving the modelling of multivariate time series (MTS) data. One area that has been largely overlooked so far is the particular type of time series where the dataset consists of a large number of variables but with a small number of observations. In this paper, we describe the development of a novel computational method based on genetic algorithms that bypasses the size restrictions of traditional statistical MTS methods, makes no distribution assumptions, and also locates the order and associated parameters as a whole step. We apply this method to the prediction and modelling of glaucomatous visual field deterioration.

[1]  A. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[2]  C. Chatfield Model uncertainty, data mining and statistical inference , 1995 .

[3]  E. Winzeler,et al.  Genomics, gene expression and DNA arrays , 2000, Nature.

[4]  Martin Casdagli,et al.  Nonlinear Modeling And Forecasting , 1992 .

[5]  P. Whittle,et al.  Prediction and Regulation. , 1965 .

[6]  Hisashi Shimodaira,et al.  Time-Series Prediction , 2002 .

[7]  Douglas G. Altman,et al.  Practical statistics for medical research , 1990 .

[8]  Allan Tucker,et al.  Grouping multivariate time series variables: applications to chemical process and visual field data , 2001, Knowl. Based Syst..

[9]  M. Clyde,et al.  Model Uncertainty , 2003 .

[10]  N. Lavrac,et al.  Intelligent Data Analysis in Medicine and Pharmacology , 1997 .

[11]  A. N. Barrett,et al.  Seeding a genetic population for mesh optimisation and evaluation , 1998 .

[12]  Helmut Lütkepohl,et al.  Introduction to multiple time series analysis , 1991 .

[13]  Andrew Ehrenberg,et al.  Deconstructing statistical questions - discussion , 1994 .

[14]  David J. Hand,et al.  Deconstructing Statistical Questions , 1994 .

[15]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[16]  Paul R. Cohen,et al.  Efficient Mining of Statistical Dependencies , 1999, IJCAI.

[17]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[18]  Andreas S. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[19]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[20]  R. Quatrano Genomics , 1998, Plant Cell.

[21]  Ian T. Jolliffe,et al.  Introduction to Multiple Time Series Analysis , 1993 .

[22]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[23]  G. Lang Ophthalmology: A Short textbook , 2000 .

[24]  F. Hollwich,et al.  Ophthalmology. A Short Textbook, 2nd ed. , 1985 .

[25]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[26]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[27]  Stephen Swift,et al.  Modelling and forecasting of glaucomatous visual fields using genetic algorithms , 1999 .

[28]  Yuval Shahar,et al.  Knowledge-based temporal abstraction in clinical domains , 1996, Artif. Intell. Medicine.

[29]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[30]  H. Akaike A new look at the statistical model identification , 1974 .

[31]  Giovanni Soda,et al.  Bidirectional Dynamics for Protein Secondary Structure Prediction , 2001, Sequence Learning.