Convergence of a misanthrope process to the entropy solution of 1D problems
暂无分享,去创建一个
[1] Kerner,et al. Experimental properties of complexity in traffic flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[2] Benoît Merlet,et al. Error estimate for finite volume scheme , 2007, Numerische Mathematik.
[3] Sophie Mercier,et al. An implicit finite volume scheme for a scalar hyperbolic problem with measure data related to piecewise deterministic Markov processes , 2008 .
[4] Alexandros Sopasakis,et al. Stochastic Modeling and Simulation of Traffic Flow: Asymmetric Single Exclusion Process with Arrhenius look-ahead dynamics , 2006, SIAM J. Appl. Math..
[5] Fraydoum Rezakhanlou,et al. Hydrodynamic limit for attractive particle systems on 417-1417-1417-1 , 1991 .
[6] Julien Vovelle,et al. Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains , 2002, Numerische Mathematik.
[7] R. J. Diperna,et al. Measure-valued solutions to conservation laws , 1985 .
[8] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[9] Antoine Tordeux. Étude de processus en temps continu modélisant l'écoulement de flux de trafic routier , 2010 .
[10] Long Chen. FINITE VOLUME METHODS , 2011 .
[11] M. Vares,et al. Hydrodynamic equations for attractive particle systems on ℤ , 1987 .
[12] D. Helbing. Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.
[13] F. Rezakhanlou. Hydrodynamic limit for attractive particle systems on ${\bf Z}^d$ , 1991 .
[14] J. Nédélec,et al. First order quasilinear equations with boundary conditions , 1979 .
[15] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[16] M J Lighthill,et al. On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[17] Masahiro Kanai,et al. Two-lane traffic-flow model with an exact steady-state solution. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[18] C. Cocozza-Thivent,et al. Quelques compléments sur le processus des misanthropes et le processus «zéro-range» , 1985 .
[19] R. LeVeque. Numerical methods for conservation laws , 1990 .
[20] K. Ravishankar,et al. Euler hydrodynamics of one-dimensional attractive particle systems , 2006 .
[21] R Mahnke,et al. Zero-range model of traffic flow. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] Christiane Cocozza-Thivent,et al. Processus des misanthropes , 1985 .
[23] Raimund Bürger,et al. The initial-boundary value problem for a scalar conservation law , 1999 .
[24] F. Rezakhanlou. Hydrodynamic limit for attractive particle systems on Zd , 1991 .
[25] T. Gobron,et al. Couplings, attractiveness and hydrodynamics for conservative particle systems , 2009, 0903.0316.
[26] Thierry Gallouët,et al. Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh , 1993 .
[27] C. Daganzo. THE CELL TRANSMISSION MODEL.. , 1994 .
[28] W. Y. Szeto,et al. Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment , 2011 .
[29] F. Spitzer. Interaction of Markov processes , 1970 .
[30] R. Eymard,et al. Limit boundary conditions for finite volume approximations of some physical problems , 2003 .
[31] C. Landim,et al. Scaling Limits of Interacting Particle Systems , 1998 .
[32] P. I. Richards. Shock Waves on the Highway , 1956 .