Determinants of diffusion in network effect markets

While economic theory of positive network externalities is focussing rather on the installed base of a given product than on structural properties of the personal network which influences the individuals’ decisions, geographical and sociological network analysis covers many structural properties but does not adequately model the dynamics of diffusion processes itself when strong externalities exist. Our paper integrates both approaches into a simulation model of the actual diffusion process and identifies determinants predicting its result. While heterogeneity of preferences, high product prices and a decentralized, regional or sparse structure of the network prevent concentration, homogeneous preferences, low prices, high connectivity, a random “global” topology or a centralized structure of the network promote concentration towards a single product.

[1]  David J. Teece,et al.  Product Emulation Strategies in The Presence of Reputation Effects And Network Externalities: Some Evidence From The Minicomputer Industry , 1990 .

[2]  S. Liebowitz,et al.  Path Dependence, Lock-In, and History , 1995 .

[3]  N. Economides The Economics of Networks , 1995 .

[4]  Tim Weitzel,et al.  The Status Quo and the Future of EDI , 1999 .

[5]  D. North Competing Technologies , Increasing Returns , and Lock-In by Historical Events , 1994 .

[6]  Joseph Farrell,et al.  Installed base and compatibility : innovation, product preannouncements and predation , 1986 .

[7]  N. Economides,et al.  Critical Mass and Network Size with Application to the Us Fax Market , 1995 .

[8]  Vijay Mahajan,et al.  New Product Diffusion Models in Marketing: A Review and Directions for Research: , 1990 .

[9]  C. Shapiro,et al.  Network Externalities, Competition, and Compatibility , 1985 .

[10]  Neil Gandal Hedonic Price Indexes for Spreadsheets and an Empirical Test for Network Externalities , 1994 .

[11]  Detlef Schoder Erfolg und Mißerfolg telematischer Innovationen , 1995 .

[12]  C. Shapiro,et al.  Systems Competition and Network Effects , 1994 .

[13]  Yi-Nung Yang,et al.  Essays on Network Effects , 1997 .

[14]  Joseph Farrell,et al.  Choosing How to Compete: Strategies and Tactics in Standardization , 1994 .

[15]  S. Oren,et al.  Critical Mass and Tariff Structure in Electronic Communications Markets , 1981 .

[16]  Thomas W. Valente Network models of the diffusion of innovations , 1996, Comput. Math. Organ. Theory.

[17]  J. Bolland,et al.  Sorting out centrality: An analysis of the performance of four centrality models in real and simulated networks , 1988 .

[18]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[19]  August E. Grant,et al.  Individual and network influences on the adoption and perceived outcomes of electronic messaging , 1990 .

[20]  K. Kansky Structure of transportation networks : relationships between network geometry and regional characteristics , 1967 .

[21]  W. Arthur,et al.  INCREASING RETURNS AND LOCK-IN BY HISTORICAL EVENTS , 1989 .

[22]  D. Jansen Einführung in die Netzwerkanalyse , 1999 .

[23]  C. Shapiro,et al.  Technology Adoption in the Presence of Network Externalities , 1986, Journal of Political Economy.

[24]  Jens Kleinemeyer Standardisierung zwischen Kooperation und Wettbewerb: Eine spieltheoretische Betrachtung , 1998 .

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  Joseph Farrell,et al.  Standardization, Compatibility, and Innovation , 1985 .

[27]  W. König,et al.  Auswirkung alternativer Koordinationsmechanismen auf die Auswahl von Kommunikationsstandards , 1999 .

[28]  Jeffrey H. Rohlfs A theory of interdependent demand for a communications service , 1974 .

[29]  Falk von Westarp,et al.  Diffusion follows structure - a network model of the software market , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[30]  George Hendrikse,et al.  The Theory of Industrial Organization , 1989 .