Slide Window Bounded-Error Time-Varying Systems Identification

This technical note presents a new identification method for discrete linear systems with time-varying parameters based on bounded-error approach. It is assumed a bounded additive error on measurements and a bound on parameter variation. Each time instant, the identification method uses a slide window along historical data and an explicit expression to provide an outer bound of the set of model parameters that is consistent with measurements, model structure and bounds on error and variations considered. Furthermore, the center estimation of the obtained outer solution set is a suitable nominal estimation of the parameters. This center is the optimal solution of a least squares problem that penalizes the prediction error of the model and the parameter variations. The explicit expression that provides the outer bound of the parameters and the optimal property of the center estimation are the main contributions of the technical note. In order to clarify the proposed method, an application example and a comparison with a previous recursive bounded-error method are included.

[1]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[2]  Gianluigi Pillonetto,et al.  Identification of Time-Varying Systems in Reproducing Kernel Hilbert Spaces , 2008, IEEE Transactions on Automatic Control.

[3]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..

[4]  Alfredo Germani,et al.  Reduced-order quadratic Kalman-like filtering for non-Gaussian systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[5]  Yang Li,et al.  Identification of Time-Varying Systems Using Multi-Wavelet Basis Functions , 2011, IEEE Transactions on Control Systems Technology.

[6]  H. Piet-Lahanier,et al.  Bounded-error tracking of time-varying parameters , 1994, IEEE Trans. Autom. Control..

[7]  T. Hsiao,et al.  Identification of Time-Varying Autoregressive Systems Using Maximum a Posteriori Estimation , 2008, IEEE Transactions on Signal Processing.

[8]  Bernard Widrow,et al.  Least-Mean-Square Adaptive Filters: Haykin/Least-Mean-Square Adaptive Filters , 2005 .

[9]  Nicholas Kalouptsidis,et al.  Adaptive system identification and signal processing algorithms , 1993 .

[10]  J. L. Maryak,et al.  Use of the Kalman filter for inference in state-space models with unknown noise distributions , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[11]  Eduardo F. Camacho,et al.  An algorithm for bounded-error identification of nonlinear systems based on DC functions , 2008, Autom..

[12]  M. Milanese,et al.  Set membership identification of nonlinear systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[13]  Lennart Ljung,et al.  Adaptation and tracking in system identification - A survey , 1990, Autom..

[14]  T. Alamo,et al.  A set-membership state estimation algorithm based on DC programming , 2008, Autom..

[15]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[16]  James C. Spall,et al.  The Kantorovich inequality for error analysis of the Kalman filter with unknown noise distributions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[17]  Maciej Niedźwiecki Optimal and Suboptimal Smoothing Algorithms for Identification of Time-varying Systems with Randomly Drifting Parameters , 2008 .

[18]  Alfredo Germani,et al.  Reduced-Order Quadratic Kalman-Like Filtering of Non-Gaussian Systems , 2012, IEEE Transactions on Automatic Control.

[19]  M. Milanese,et al.  Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .

[20]  Maciej Niedwiecki Optimal and suboptimal smoothing algorithms for identification of time-varying systems with randomly drifting parameters , 2008 .

[21]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[22]  Rogelio Lozano,et al.  Adaptive Control: Algorithms, Analysis and Applications , 2011 .

[23]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[24]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..

[25]  Eduardo F. Camacho,et al.  Bounded error identification of systems with time-varying parameters , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[26]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[27]  G. Belforte,et al.  Recursive Parameter Estimation For Time-varying Systems In Presence Of Unknown But Bounded Measurement Noise , 1992, Singapore International Conference on Intelligent Control and Instrumentation [Proceedings 1992].

[28]  Bernard Widrow,et al.  Least-mean-square adaptive filters , 2003 .