Peroxynitrite inhibits myofibrillar protein function in an in vitro assay of motility.

[1]  M. Regnier,et al.  Myosin S2 is not required for effects of myosin binding protein‐C on motility , 2007, FEBS letters.

[2]  Yaqin Xu,et al.  Alterations to myofibrillar protein function in nonischemic regions of the heart early after myocardial infarction. , 2007, American journal of physiology. Heart and circulatory physiology.

[3]  B. Hambly,et al.  Myosin binding protein-C: enigmatic regulator of cardiac contraction. , 2007, The international journal of biochemistry & cell biology.

[4]  B. Pesse,et al.  Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. , 2006, Free radical biology & medicine.

[5]  A. Rojas,et al.  Oxidative stress at the vascular wall. Mechanistic and pharmacological aspects. , 2006, Archives of medical research.

[6]  S. Simão,et al.  Inhibition of skeletal muscle S1-myosin ATPase by peroxynitrite. , 2006, Biochemistry.

[7]  T. Malinski Understanding nitric oxide physiology in the heart: a nanomedical approach. , 2005, The American journal of cardiology.

[8]  W. Paulus,et al.  Peroxynitrite-induced alpha-actinin nitration and contractile alterations in isolated human myocardial cells. , 2005, Cardiovascular research.

[9]  E. Moilanen,et al.  Nitric oxide production and signaling in inflammation. , 2005, Current drug targets. Inflammation and allergy.

[10]  Csaba Szabó,et al.  Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors , 2005, Nature Reviews Drug Discovery.

[11]  D. Allen,et al.  Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37°C , 2005 .

[12]  D. Allen,et al.  Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37 degrees C. , 2005, The Journal of physiology.

[13]  J. Pelling,et al.  Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. , 2005, American journal of physiology. Heart and circulatory physiology.

[14]  W. Guilford,et al.  The tail of myosin reduces actin filament velocity in the in vitro motility assay. , 2004, Cell motility and the cytoskeleton.

[15]  S. Thompson,et al.  Some precautions in using chelators to buffer metals in biological solutions. , 2004, Cell calcium.

[16]  Steven R Tannenbaum,et al.  Reactive nitrogen species in the chemical biology of inflammation. , 2004, Archives of biochemistry and biophysics.

[17]  J. Sellers,et al.  The in vitro motility activity of β-cardiac myosin depends on the nature of the β-myosin heavy chain gene mutation in hypertrophic cardiomyopathy , 1997, Journal of Muscle Research & Cell Motility.

[18]  R. K. Wright,et al.  Smooth, cardiac and skeletal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in vitro , 1994, Journal of Muscle Research & Cell Motility.

[19]  Kenji Sunagawa,et al.  Myosin light chain isoforms modify force-generating ability of cardiac myosin by changing the kinetics of actin-myosin interaction. , 2003, Cardiovascular research.

[20]  S. Hazen,et al.  Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. , 2003, JAMA.

[21]  H. Ischiropoulos,et al.  Oxidative stress and nitration in neurodegeneration: cause, effect, or association? , 2003, The Journal of clinical investigation.

[22]  J. Bauer,et al.  Peroxynitrite-induced inhibition and nitration of cardiac myofibrillar creatine kinase. , 2002, Biochimie.

[23]  D. Giustarini,et al.  Methionine oxidation as a major cause of the functional impairment of oxidized actin. , 2002, Free radical biology & medicine.

[24]  Rifat Hasan,et al.  Peroxynitrite oxidation of tubulin sulfhydryls inhibits microtubule polymerization. , 2002, Archives of biochemistry and biophysics.

[25]  J. Bauer,et al.  Intracellular distribution of peroxynitrite during doxorubicin cardiomyopathy: evidence for selective impairment of myofibrillar creatine kinase , 2002, British journal of pharmacology.

[26]  B Balachandran,et al.  Role of Oxidative Stress and Antioxidants in Neurodegenerative Diseases , 2002, Nutritional neuroscience.

[27]  D. Giustarini,et al.  Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. , 2001, Free radical biology & medicine.

[28]  I. Kulikovskaya,et al.  Changes in cardiac contractility related to calcium-mediated changes in phosphorylation of myosin-binding protein C. , 2001, Biophysical journal.

[29]  D. V. Van Wagoner,et al.  Impaired Myofibrillar Energetics and Oxidative Injury During Human Atrial Fibrillation , 2001, Circulation.

[30]  S. Powell,et al.  Actin is oxidized during myocardial ischemia. , 2001, Free radical biology & medicine.

[31]  Christen M. Coyle,et al.  Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. , 2001, Cardiovascular research.

[32]  J. Zweier,et al.  Nitric oxide and peroxynitrite in postischemic myocardium. , 2001, Antioxidants & redox signaling.

[33]  H. Westerblad,et al.  Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation. , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  Peitan Liu,et al.  Peroxynitrite attenuates hepatic ischemia-reperfusion injury. , 2000, American journal of physiology. Cell physiology.

[35]  P. Ferdinandy,et al.  Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. , 2000, Circulation research.

[36]  J. Bauer,et al.  Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. , 2000, The Journal of pharmacology and experimental therapeutics.

[37]  L. Viera,et al.  Peroxynitrite irreversibly decreases diastolic and systolic function in cardiac muscle. , 1999, Free radical biology & medicine.

[38]  D. Sawyer,et al.  Cytokine-mediated apoptosis in cardiac myocytes: the role of inducible nitric oxide synthase induction and peroxynitrite generation. , 1999, Circulation research.

[39]  D. Warshaw,et al.  Tropomyosin directly modulates actomyosin mechanical performance at the level of a single actin filament. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Dimarco,et al.  Peroxynitrite induces contractile dysfunction and lipid peroxidation in the diaphragm. , 1999, Journal of applied physiology.

[41]  M. Tien,et al.  Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Lopez,et al.  Peroxynitrite aggravates myocardial reperfusion injury in the isolated perfused rat heart. , 1997, Cardiovascular research.

[43]  S. Cuzzocrea,et al.  Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. , 1997, Cardiovascular research.

[44]  H. Maeda,et al.  Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism for procollagenase activation involving nitric oxide. , 1997, Archives of biochemistry and biophysics.

[45]  Peitan Liu,et al.  Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. , 1997, The American journal of physiology.

[46]  R. Schulz,et al.  Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. , 1997, Cardiovascular research.

[47]  J. Sellers,et al.  The in vitro motility activity of beta-cardiac myosin depends on the nature of the beta-myosin heavy chain gene mutation in hypertrophic cardiomyopathy. , 1997, Journal of muscle research and cell motility.

[48]  J. Zweier,et al.  Measurement of Nitric Oxide and Peroxynitrite Generation in the Postischemic Heart , 1996, The Journal of Biological Chemistry.

[49]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[50]  H. Sugi,et al.  Different cardiac myosin isoforms exhibit equal force-generating ability in vitro. , 1996, Biochimica et biophysica acta.

[51]  H. Ischiropoulos,et al.  Detection and quantitation of nitrotyrosine residues in proteins: in vivo marker of peroxynitrite. , 1996, Methods in enzymology.

[52]  W. Lehman,et al.  Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin filaments. , 1995, Journal of molecular biology.

[53]  A. Al-Mehdi,et al.  Peroxynitrite‐mediated oxidative protein modifications , 1995, FEBS letters.

[54]  J. Beckman,et al.  The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. , 1995, Archives of biochemistry and biophysics.

[55]  P G Anderson,et al.  Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. , 1994, Biological chemistry Hoppe-Seyler.

[56]  B. Ames,et al.  Oxidants, antioxidants, and the degenerative diseases of aging. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[57]  K. Trybus,et al.  Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro , 1990, The Journal of cell biology.

[58]  J. Spudich,et al.  Fluorescent actin filaments move on myosin fixed to a glass surface. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. D. Pardee,et al.  [18] Purification of muscle actin , 1982 .

[60]  J. Spudich,et al.  Purification of muscle actin. , 1982, Methods in enzymology.

[61]  M. Rabinowitz,et al.  Measurements of half-life of rat cardiac myosin heavy chain with leucyl-tRNA used as precursor pool. , 1977, The Journal of biological chemistry.

[62]  N. Alpert,et al.  Purification of cardiac myosin. Application to hypertrophied myocardium. , 1975, Biochimica et biophysica acta.

[63]  A. Huxley Muscle structure and theories of contraction. , 1957, Progress in biophysics and biophysical chemistry.