HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants.

[1]  M. Tester,et al.  Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type–Specific Alteration of Na+ Transport in Arabidopsis[W][OA] , 2009, The Plant Cell Online.

[2]  C. Fizames,et al.  Diversity in Expression Patterns and Functional Properties in the Rice HKT Transporter Family1[W] , 2009, Plant Physiology.

[3]  M. Nieves‐Cordones,et al.  A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5 , 2008, Plant Molecular Biology.

[4]  A. Rodríguez-Navarro,et al.  Effects of polylinker uATGs on the function of grass HKT1 transporters expressed in yeast cells. , 2008, Plant & cell physiology.

[5]  J. Schroeder,et al.  Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress , 2008 .

[6]  M. Tester,et al.  Mechanisms of salinity tolerance. , 2008, Annual review of plant biology.

[7]  R. Munns,et al.  Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. , 2008, Journal of experimental botany.

[8]  M. Tester,et al.  Salinity tolerance of Arabidopsis: a good model for cereals? , 2007, Trends in plant science.

[9]  R. Takahashi,et al.  Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. , 2007, Journal of experimental botany.

[10]  R. Munns Prophylactively parking sodium in the plant. , 2007, The New phytologist.

[11]  C. Plassard,et al.  Molecular and Functional Characterization of a Na+-K+ Transporter from the Trk Family in the Ectomycorrhizal Fungus Hebeloma cylindrosporum* , 2007, Journal of Biological Chemistry.

[12]  J. Schroeder,et al.  Rice OsHKT2;1 transporter mediates large Na+ influx component into K+‐starved roots for growth , 2007, The EMBO journal.

[13]  E. Blumwald,et al.  Na+ transport in plants , 2007, FEBS letters.

[14]  M. Gierth,et al.  Potassium transporters in plants – Involvement in K+ acquisition, redistribution and homeostasis , 2007, FEBS letters.

[15]  M. Tester,et al.  The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. , 2007, Plant, cell & environment.

[16]  M. Tester,et al.  HKT1;5-Like Cation Transporters Linked to Na+ Exclusion Loci in Wheat, Nax2 and Kna11[OA] , 2007, Plant Physiology.

[17]  A. Amtmann,et al.  Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. , 2006, The Plant journal : for cell and molecular biology.

[18]  R. Munns,et al.  A Sodium Transporter (HKT7) Is a Candidate for Nax1, a Gene for Salt Tolerance in Durum Wheat1[W][OA] , 2006, Plant Physiology.

[19]  Ivan Baxter,et al.  Natural Variants of AtHKT1 Enhance Na+ Accumulation in Two Wild Populations of Arabidopsis , 2006, PLoS genetics.

[20]  R. Munns,et al.  Physiological Characterization of Two Genes for Na+ Exclusion in Durum Wheat, Nax1 and Nax21 , 2006, Plant Physiology.

[21]  M. Tester,et al.  Nomenclature for HKT transporters, key determinants of plant salinity tolerance. , 2006, Trends in plant science.

[22]  J. Schroeder,et al.  Calcium regulation of sodium hypersensitivities of sos3 and athkt1 mutants. , 2006, Plant & cell physiology.

[23]  J. Schroeder,et al.  All Four Putative Selectivity Filter Glycine Residues in KtrB Are Essential for High Affinity and Selective K+ Uptake by the KtrAB System from Vibrio alginolyticus* , 2005, Journal of Biological Chemistry.

[24]  M. Osumi,et al.  Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. , 2005, The Plant journal : for cell and molecular biology.

[25]  A. Rodríguez-Navarro,et al.  HKT1 Mediates Sodium Uniport in Roots. Pitfalls in the Expression of HKT1 in Yeast1 , 2005, Plant Physiology.

[26]  S. Luan,et al.  A rice quantitative trait locus for salt tolerance encodes a sodium transporter , 2005, Nature Genetics.

[27]  T. Cuin,et al.  Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants , 2005, Planta.

[28]  J. Schroeder,et al.  The Potassium Transporter AtHAK5 Functions in K+ Deprivation-Induced High-Affinity K+ Uptake and AKT1 K+ Channel Contribution to K+ Uptake Kinetics in Arabidopsis Roots1[w] , 2005, Plant Physiology.

[29]  R. Munns,et al.  A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. , 2004, Functional plant biology : FPB.

[30]  J. Schroeder,et al.  Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. Miura,et al.  AtHKT1 Facilitates Na+ Homeostasis and K+ Nutrition in Planta1 , 2004, Plant Physiology.

[32]  J. Schroeder,et al.  Sodium Transporters in Plants. Diverse Genes and Physiological Functions1 , 2004, Plant Physiology.

[33]  A. Jagendorf,et al.  A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[35]  Christopher Miller,et al.  Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels , 2004, Nature.

[36]  Mark Tester,et al.  Nonselective cation channels in plants. , 2003, Annual review of plant biology.

[37]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[38]  M. Tester,et al.  Sodium Influx and Accumulation in Arabidopsis1 , 2003, Plant Physiology.

[39]  R. Munns,et al.  Genetic control of sodium exclusion in durum wheat , 2003 .

[40]  A. Miyao,et al.  Target Site Specificity of the Tos17 Retrotransposon Shows a Preference for Insertion within Genes and against Insertion in Retrotransposon-Rich Regions of the Genome Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.012559. , 2003, The Plant Cell Online.

[41]  H. Bohnert,et al.  Expression of the cation transporter McHKT1 in a halophyte , 2003, Plant Molecular Biology.

[42]  A. Rodríguez-Navarro,et al.  Sodium transport and HKT transporters: the rice model. , 2003, The Plant journal : for cell and molecular biology.

[43]  Nobuyuki Uozumi,et al.  Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance , 2003, The EMBO journal.

[44]  K. Hirschi,et al.  Plants pass the salt. , 2003, Trends in plant science.

[45]  T. Higgins,et al.  The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. , 2003, The Plant journal : for cell and molecular biology.

[46]  M. Sussman,et al.  Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1 , 2002, FEBS letters.

[47]  P. Heard,et al.  A role for HKT1 in sodium uptake by wheat roots. , 2002, The Plant journal : for cell and molecular biology.

[48]  H. Bohnert,et al.  Characterization of a HKT-type transporter in rice as a general alkali cation transporter. , 2002, The Plant journal : for cell and molecular biology.

[49]  S. Yokoi,et al.  Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. , 2002, The Plant journal : for cell and molecular biology.

[50]  J. Schroeder,et al.  Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica) , 2002, Science.

[52]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica) , 2002, Science.

[53]  Jian-Kang Zhu,et al.  The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010371. , 2002, The Plant Cell Online.

[54]  F. Maathuis,et al.  Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. , 2001, Plant physiology.

[55]  S. Yokoi,et al.  AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Miller,et al.  KcsA: it's a potassium channel. , 2001, The Journal of general physiology.

[57]  K. Yoshida,et al.  Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. , 2001, The Plant journal : for cell and molecular biology.

[58]  Yoko Sato,et al.  Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  K. Feldmann,et al.  TRH1 Encodes a Potassium Transporter Required for Tip Growth in Arabidopsis Root Hairs , 2001, Plant Cell.

[60]  E. Blumwald Sodium transport and salt tolerance in plants. , 2000, Current opinion in cell biology.

[61]  D. Schachtman,et al.  Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis , 2000, Plant Molecular Biology.

[62]  H. Shi,et al.  The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[63]  K. Jung,et al.  T-DNA insertional mutagenesis for functional genomics in rice. , 2000, The Plant journal : for cell and molecular biology.

[64]  J. Schroeder,et al.  Enhancement of Na(+) uptake currents, time-dependent inward-rectifying K(+) channel currents, and K(+) channel transcripts by K(+) starvation in wheat root cells. , 2000, Plant physiology.

[65]  J. Schroeder,et al.  The Arabidopsis HKT1 gene homolog mediates inward Na(+) currents in xenopus laevis oocytes and Na(+) uptake in Saccharomyces cerevisiae. , 2000, Plant physiology.

[66]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[67]  M. Tester,et al.  A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. , 2000, Plant physiology.

[68]  W. Snedden,et al.  Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. , 1999, Science.

[69]  Hirokazu Kobayashi,et al.  A Recessive Arabidopsis Mutant That Grows Photoautotrophically under Salt Stress Shows Enhanced Active Oxygen Detoxification , 1999, Plant Cell.

[70]  J. Schroeder,et al.  Genetic Selection of Mutations in the High Affinity K+ Transporter HKT1 That Define Functions of a Loop Site for Reduced Na+ Permeability and Increased Na+Tolerance* , 1999, The Journal of Biological Chemistry.

[71]  G. Fink,et al.  The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  T. Flowers Salinisation and horticultural production , 1998 .

[73]  Wang,et al.  Rapid Up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium , 1998, Plant physiology.

[74]  D. Bouchez,et al.  Identification and Disruption of a Plant Shaker-like Outward Channel Involved in K+ Release into the Xylem Sap , 1998, Cell.

[75]  Jian-Kang Zhu,et al.  Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrition , 1998, Plant Cell.

[76]  S. Luan,et al.  AtKUP1: A Dual-Affinity K+ Transporter from Arabidopsis , 1998, Plant Cell.

[77]  J. Schroeder,et al.  AtKUP1: An Arabidopsis Gene Encoding High-Affinity Potassium Transport Activity , 1998, Plant Cell.

[78]  F. Rubio,et al.  The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. , 1997, The Plant cell.

[79]  L. Wegner,et al.  Properties of Two Outward-Rectifying Channels in Root Xylem Parenchyma Cells Suggest a Role in K+ Homeostasis and Long-Distance Signaling , 1997, Plant physiology.

[80]  M. Blatt,et al.  A new family of K+ transporters from Arabidopsis that are conserved across phyla , 1997, FEBS letters.

[81]  H. Hirochika Retrotransposons of rice: their regulation and use for genome analysis , 1997, Plant Molecular Biology.

[82]  Mark Tester,et al.  A patch clamp study of Na+ transport in maize roots. , 1997, Journal of experimental botany.

[83]  R. Leigh,et al.  Pathways for the permeation of Na+ and Cl- into protoplasts derived from the cortex of wheat roots. , 1997, Journal of experimental botany.

[84]  R. Leigh,et al.  Multiple inward channels provide flexibility in Na+/K+ discrimination at the plasma membrane of barley suspension culture cells. , 1997, Journal of experimental botany.

[85]  N. A. Walker,et al.  The Physiological Relevance of Na+-Coupled K+-Transport , 1996, Plant physiology.

[86]  J. Dvorak,et al.  Engineering of interstitial foreign chromosome segments containing the K+/Na+ selectivity gene Kna1 by sequential homoeologous recombination in durum wheat , 1996, Theoretical and Applied Genetics.

[87]  J. Schroeder,et al.  Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. , 1996, The Plant journal : for cell and molecular biology.

[88]  H. Hirochika,et al.  Retrotransposons of rice involved in mutations induced by tissue culture. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[89]  L. Ding,et al.  SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. , 1996, The Plant cell.

[90]  J. Dvorak,et al.  Mapping of the K+/Na+ discrimination locus Kna1 in wheat , 1996, Theoretical and Applied Genetics.

[91]  J. Schroeder,et al.  Sodium-Driven Potassium Uptake by the Plant Potassium Transporter HKT1 and Mutations Conferring Salt Tolerance , 1995, Science.

[92]  R. Serrano,et al.  A salt-sensitive 3'(2'),5'-bisphosphate nucleotidase involved in sulfate activation , 1995, Science.

[93]  J. Schroeder,et al.  Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants , 1994, Nature.

[94]  T. Komari,et al.  Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. , 1994, The Plant journal : for cell and molecular biology.

[95]  L. Wegner,et al.  Ion Channels in the Xylem Parenchyma of Barley Roots (A Procedure to Isolate Protoplasts from This Tissue and a Patch-Clamp Exploration of Salt Passageways into Xylem Vessels , 1994, Plant physiology.

[96]  H. Bohnert,et al.  Stress Protection of Transgenic Tobacco by Production of the Osmolyte Mannitol , 1993, Science.

[97]  R. Serrano,et al.  A novel and conserved salt‐induced protein is an important determinant of salt tolerance in yeast. , 1992, The EMBO journal.

[98]  E. Blumwald,et al.  Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[99]  N. A. Walker,et al.  Sodium-coupled solute transport in charophyte algae: A general mechanism for transport energization in plant cells? , 1991, Planta.

[100]  A. Läuchli,et al.  Sodium exclusion mechanisms at the root surface of two maize cultivars , 1990, Plant and Soil.

[101]  J. Gorham,et al.  Partial characterization of the trait for enhanced K+−Na+ discrimination in the D genome of wheat , 1990, Planta.

[102]  N. A. Walker,et al.  Transport of potassium inChara australis: I. A symport with sodium , 1989, The Journal of Membrane Biology.

[103]  J. Cheeseman,et al.  Mechanisms of salinity tolerance in plants. , 1988, Plant physiology.

[104]  C. N. Law,et al.  Chromosomal location of a K/Na discrimination character in the D genome of wheat , 1987, Theoretical and Applied Genetics.

[105]  K Raschke,et al.  Voltage dependence of K channels in guard-cell protoplasts. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[106]  E. Blumwald,et al.  Salt tolerance in suspension cultures of sugar beet : induction of na/h antiport activity at the tonoplast by growth in salt. , 1987, Plant physiology.

[107]  E. Blumwald,et al.  Na/H Antiport in Isolated Tonoplast Vesicles from Storage Tissue of Beta vulgaris. , 1985, Plant physiology.

[108]  A. Lauchli,et al.  Sodium versus potassium: substitution and compartmentation , 1983 .

[109]  R. Munns,et al.  Mechanisms of salt tolerance in nonhalophytes. , 1980 .

[110]  E. J. Hewitt,et al.  Principles of plant nutrition , 1979, Nature.

[111]  D. Rains,et al.  Sodium absorption by barley roots: role of the dual mechanisms of alkali cation transport. , 1967, Plant physiology.

[112]  D. Rains,et al.  Transport of Sodium in Plant Tissue , 1965, Science.

[113]  Hillel Magen,et al.  INTERNATIONAL POTASH INSTITUTE , 2008 .

[114]  Huazhong Shi,et al.  Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana , 2003, Nature Biotechnology.

[115]  Takashi Matsumoto,et al.  RiceGAAS: an automated annotation system and database for rice genome sequence , 2002, Nucleic Acids Res..

[116]  Jian-Kang Zhu,et al.  Salt and drought stress signal transduction in plants. , 2002, Annual review of plant biology.

[117]  A. Oliphant,et al.  A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). , 2002, Science.

[118]  Nelson,et al.  Myo-inositol-dependent sodium uptake in ice plant , 1999, Plant physiology.

[119]  J. Ward,et al.  Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. , 1994, Annual review of biophysics and biomolecular structure.

[120]  R. Munns Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses , 1993 .