The importance of rheology in mineral flotation: a review

[1]  R. J. Hunter,et al.  Plastic flow behavior of coagulated suspensions treated as a repeptization phenomenon , 1971 .

[2]  D. Ercolani,et al.  Shear viscosity of settling suspensions , 1979 .

[3]  R. R. Klimpel Slurry rheology influence on the performance of mineral/coal grinding circuits. Part 2 , 1983 .

[4]  David V. Boger,et al.  Yield Stress Measurement for Concentrated Suspensions , 1983 .

[5]  D. V. Boger,et al.  Direct Yield Stress Measurement with the Vane Method , 1985 .

[6]  D. V. Boger,et al.  Surface chemistry effects on concentrated suspension rheology , 1990 .

[7]  Q. D. Nguyen,et al.  Measuring the Flow Properties of Yield Stress Fluids , 1992 .

[8]  B. Moudgil,et al.  Correlation between froth viscosity and flotation efficiency , 1993 .

[9]  C. Prestidge,et al.  Rheological investigations of sulphide mineral slurries , 1995 .

[10]  S. J. Partridge,et al.  A new viscometer for rheological measurements on settling suspensions , 1995 .

[11]  Chris Aldrich,et al.  The interpretation of flotation froth surfaces by using digital image analysis and neural networks , 1995 .

[12]  Chris Aldrich,et al.  The significance of flotation froth appearance for machine vision control , 1996 .

[13]  S. Kawatra,et al.  On-line measurement of viscosity and determination of flow types for mineral suspensions , 1996 .

[14]  Fengnian Shi,et al.  A model for slurry rheology , 1996 .

[15]  Fengnian Shi,et al.  Measuring the rheology of slurries using an on-line viscometer , 1996 .

[16]  C. Prestidge Rheological investigations of ultrafine galena particle slurries under flotation-related conditions , 1997 .

[17]  J. Finch,et al.  An agglomeration study of sulphide minerals using zeta-potential and settling rate. Part 1: Pyrite and galena , 1998 .

[18]  Janusz S. Laskowski,et al.  Frothing in flotation II , 1998 .

[19]  P. C. Kapur,et al.  Shear yield stress of partially flocculated colloidal suspensions , 1998 .

[20]  P. Luckham,et al.  The colloidal and rheological properties of bentonite suspensions , 1999 .

[21]  Howard A. Barnes,et al.  The yield stress—a review or ‘παντα ρει’—everything flows? , 1999 .

[22]  Peter Self,et al.  Surface chemistry and rheological behaviour of titania pigment suspensions , 1999 .

[23]  P. Scales,et al.  The binding of monovalent electrolyte ions on α-alumina. II. The shear yield stress of concentrated suspensions , 1999 .

[24]  P. Scales,et al.  Surface chemistry-rheology relationships in concentrated mineral suspensions , 2000 .

[25]  David V. Boger,et al.  Rheology and the Minerals Industry , 2000 .

[26]  Dirk Penner,et al.  Influence of anions on the rheological properties of clay mineral dispersions , 2001 .

[27]  L. Huynh,et al.  A rheological and electrokinetic investigation of the interactions between pigment particles dispersed in aqueous solutions of short-chain phosphates , 2001 .

[28]  G. Morris,et al.  Polymer depressants at the talc–water interface: adsorption isotherm, microflotation and electrokinetic studies , 2002 .

[29]  Fengnian Shi,et al.  Effects of slurry rheology on industrial grinding performance , 2002 .

[30]  H. Dinçer,et al.  The effect of chemicals on the viscosity and stability of coal water slurries , 2003 .

[31]  Continuous rheometry for industrial slurries , 2003 .

[32]  J. Finch,et al.  Aggregation of sphalerite: role of zinc ions. , 2003, Journal of colloid and interface science.

[33]  Fengnian Shi,et al.  The rheology of flotation froths , 2003 .

[34]  J. Addai-Mensah,et al.  Investigation of the effect of polymer structure type on flocculation, rheology and dewatering behaviour of kaolinite dispersions , 2003 .

[35]  R. Smart,et al.  Influence of aluminum doping on titania pigment structural and dispersion properties. , 2003, Journal of colloid and interface science.

[36]  Emmanuel Manlapig,et al.  Froth recovery measurement in plant scale flotation cells , 2003 .

[37]  J-P. Franzidis,et al.  Bubble load measurement in the pulp zone of industrial flotation machines—a new device for determining the froth recovery of attached particles , 2004 .

[38]  Rheology of strongly sedimenting magnetite suspensions , 2005 .

[39]  M. J. Pearse,et al.  An overview of the use of chemical reagents in mineral processing , 2005 .

[40]  J. Addai-Mensah,et al.  Microstructure, rheology and dewatering behaviour of smectite dispersions during orthokinetic flocculation , 2005 .

[41]  A. Isayev,et al.  Rheology: Concepts, Methods and Applications , 2005 .

[42]  S. Farrokhpay,et al.  Influence of polymer functional group architecture on titania pigment dispersion , 2005 .

[43]  D. R. Nagaraj,et al.  Reagent selection and optimization—the case for a holistic approach , 2005 .

[44]  D. Bradshaw,et al.  Effect of CMC and pH on the Rheology of Suspensions of Isotropic and Anisotropic Minerals , 2007 .

[45]  F. Galindo-Rosales,et al.  Intrinsic viscosity of SiO2, Al2O3 and TiO2 aqueous suspensions. , 2006, Journal of colloid and interface science.

[46]  D. Bradshaw,et al.  Presence of negative charge on the basal planes of New York talc. , 2007, Journal of colloid and interface science.

[47]  P. M. Gallegos-Acevedo,et al.  Bubble load estimation in the froth zone to predict the concentrate mass flow rate of solids in column flotation , 2007 .

[48]  Eric Forssberg,et al.  Influence of slurry rheology on stirred media milling of quartzite , 2007 .

[49]  Juan Yianatos,et al.  Froth recovery of industrial flotation cells , 2008 .

[50]  Taha A. Taha,et al.  Effect of chemical additives on flow characteristics of coal slurries , 2008 .

[51]  H. Schubert,et al.  On the optimization of hydrodynamics in fine particle flotation , 2008 .

[52]  Peter N. Holtham,et al.  On-line froth acoustic emission measurements in industrial sites , 2008 .

[53]  Relationship between slurry rheology and its mineralogical content , 2008 .

[54]  C. J. Meyer,et al.  Numerical modelling of non-Newtonian slurry in a mechanical flotation cell , 2009 .

[55]  Rheology of aqueous suspensions of needle-like mineral particles , 2010 .

[56]  S. Farrokhpay,et al.  Stabilisation of titania pigment particles with anionic polymeric dispersants , 2010 .

[57]  J. P. Franzidis,et al.  Froth Recovery Factor – What Is It and Why Is It So Difficult To Measure? , 2010 .

[58]  E. Forbes,et al.  The influence of phyllosilicate mineralogy on the rheology of mineral slurries , 2011 .

[59]  S. Grano,et al.  Detachment of coarse particles from oscillating bubbles—The effect of particle contact angle, shape and medium viscosity , 2011 .

[60]  D. Fornasiero,et al.  Rheological studies of nickel oxide and quartz/hematite mixture systems , 2011 .

[61]  B. Firth,et al.  Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250 , 2011 .

[62]  P. Somasundaran,et al.  Impact of pulp rheology on selective recovery of value minerals from ores , 2011 .

[63]  S. Farrokhpay,et al.  Effect of water quality on froth stability in flotation , 2011 .

[64]  S. Farrokhpay The significance of froth stability in mineral flotation--a review. , 2011, Advances in colloid and interface science.

[65]  E. Forbes,et al.  The effects of chrysotile mineralogical properties on the rheology of chrysotile suspensions , 2011 .

[66]  W. Skinner,et al.  Rheology of aging aqueous muscovite clay dispersions , 2011 .

[67]  Improving the recovery of low grade coarse composite particles in porphyry copper ores , 2011 .

[68]  Saeed Farrokhpay,et al.  An investigation into the effect of water quality on froth stability , 2012 .