Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage

[1]  Yan Yu,et al.  2D material as anode for sodium ion batteries: Recent progress and perspectives , 2019, Energy Storage Materials.

[2]  Youhua Xiao,et al.  Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium-sulfur batteries. , 2018, Nanoscale.

[3]  S. Yao,et al.  Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes , 2018, Advanced Energy Materials.

[4]  Baoling Huang,et al.  Chemical interactions between red P and functional groups in NiP3/CNT composite anodes for enhanced sodium storage , 2018 .

[5]  F. Ciucci,et al.  Novel 2D Sb2S3 Nanosheet/CNT Coupling Layer for Exceptional Polysulfide Recycling Performance , 2018, Advanced Energy Materials.

[6]  Yan Yu,et al.  An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage , 2018, Nano Energy.

[7]  P. Bhattacharya,et al.  Emergent Pseudocapacitance of 2D Nanomaterials , 2018 .

[8]  Zonghai Chen,et al.  Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodium‐Ion Batteries , 2018 .

[9]  Quan-hong Yang,et al.  Hierarchical MoS2/Carbon microspheres as long-life and high-rate anodes for sodium-ion batteries , 2018 .

[10]  Dan Sun,et al.  MoS2/Graphene Nanosheets from Commercial Bulky MoS2 and Graphite as Anode Materials for High Rate Sodium‐Ion Batteries , 2018 .

[11]  G. Stucky,et al.  High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries , 2018 .

[12]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[13]  F. Ciucci,et al.  Revealing Pseudocapacitive Mechanisms of Metal Dichalcogenide SnS2/Graphene‐CNT Aerogels for High‐Energy Na Hybrid Capacitors , 2018 .

[14]  K. Kang,et al.  Carbon nanomaterials for advanced lithium sulfur batteries , 2018 .

[15]  Jun Lu,et al.  Batteries and fuel cells for emerging electric vehicle markets , 2018 .

[16]  S. Yao,et al.  Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries , 2018 .

[17]  Zhiyu Wang,et al.  MXene-Based Electrode with Enhanced Pseudocapacitance and Volumetric Capacity for Power-Type and Ultra-Long Life Lithium Storage. , 2018, ACS nano.

[18]  Y. Mai,et al.  Rational Assembly of Hollow Microporous Carbon Spheres as P Hosts for Long‐Life Sodium‐Ion Batteries , 2018 .

[19]  A. Moshfegh,et al.  Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. , 2018, Nanoscale horizons.

[20]  J. Zapien,et al.  Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials. , 2018, Nanoscale.

[21]  Xiaobo Ji,et al.  Carbon Anode Materials for Advanced Sodium‐Ion Batteries , 2017 .

[22]  Jiaqiang Huang,et al.  Positive role of oxygen vacancy in electrochemical performance of CoMn 2 O 4 cathodes for Li-O 2 batteries , 2017 .

[23]  Yongsong Luo,et al.  Nanosilicon anodes for high performance rechargeable batteries , 2017 .

[24]  Quan-hong Yang,et al.  A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover , 2017 .

[25]  Quan-hong Yang,et al.  Dense graphene monolith oxygen cathodes for ultrahigh volumetric energy densities , 2017 .

[26]  Jiaqiang Huang,et al.  Sb-doped SnO 2 /graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes , 2017 .

[27]  Jianneng Liang,et al.  Ultrafine MoO2‐Carbon Microstructures Enable Ultralong‐Life Power‐Type Sodium Ion Storage by Enhanced Pseudocapacitance , 2017 .

[28]  Jiang Tang,et al.  Highly Anisotropic Sb2Se3 Nanosheets: Gentle Exfoliation from the Bulk Precursors Possessing 1D Crystal Structure , 2017, Advanced materials.

[29]  C. Guan,et al.  Ultrathin MoS2 Nanosheets@Metal Organic Framework‐Derived N‐Doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability , 2017 .

[30]  S. Yao,et al.  Atomic scale, amorphous FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries , 2017 .

[31]  Baoling Huang,et al.  Porous RuO 2 Nanosheet/CNT Electrodes for DMSO-based Li-O 2 and Li ion O 2 Batteries , 2017 .

[32]  Yitai Qian,et al.  MoSe2‐Covered N,P‐Doped Carbon Nanosheets as a Long‐Life and High‐Rate Anode Material for Sodium‐Ion Batteries , 2017 .

[33]  Zhichuan J. Xu,et al.  A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes , 2017 .

[34]  F. Ciucci,et al.  Unveiling the Unique Phase Transformation Behavior and Sodiation Kinetics of 1D van der Waals Sb2S3 Anodes for Sodium Ion Batteries , 2017 .

[35]  S. Yao,et al.  Recent progress in rational design of anode materials for high-performance Na-ion batteries , 2017 .

[36]  Bruce Dunn,et al.  Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. , 2017, Nature materials.

[37]  Qiyuan He,et al.  Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.

[38]  T. Zhao,et al.  Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries , 2017 .

[39]  Meilin Liu,et al.  Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb2S3 on Sulfur-Doped Graphene Sheets. , 2016, ACS nano.

[40]  Z. Shen,et al.  Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays. , 2016, ACS nano.

[41]  Xiaobo Ji,et al.  Large‐Area Carbon Nanosheets Doped with Phosphorus: A High‐Performance Anode Material for Sodium‐Ion Batteries , 2016, Advanced science.

[42]  J. Maultzsch,et al.  Few‐Layer Antimonene by Liquid‐Phase Exfoliation , 2016, Angewandte Chemie.

[43]  Jiaqiang Huang,et al.  Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries , 2016 .

[44]  Qingsheng Zeng,et al.  Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. , 2016, Small.

[45]  Xiaofeng Fan,et al.  Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance , 2016, Nature Communications.

[46]  Yong Cheng,et al.  Facile synthesis of symmetric bundle-like Sb2S3 micron-structures and their application in lithium-ion battery anodes. , 2016, Chemical communications.

[47]  B. Chowdari,et al.  RGO/Stibnite Nanocomposite as a Dual Anode for Lithium and Sodium Ion Batteries , 2016 .

[48]  Xiaobo Ji,et al.  One-Dimensional Rod-Like Sb₂S₃-Based Anode for High-Performance Sodium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[49]  A. Manthiram,et al.  Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. , 2015, Chemical communications.

[50]  Yunhui Huang,et al.  Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling , 2015, Nature Communications.

[51]  Guoxiu Wang,et al.  Ultrathin MoS2 Nanosheets as Anode Materials for Sodium‐Ion Batteries with Superior Performance , 2015 .

[52]  Hongsen Li,et al.  High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries. , 2015, Nanoscale.

[53]  Nikhil V. Medhekar,et al.  Ab initio characterization of layered MoS2 as anode for sodium-ion batteries , 2014 .

[54]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[55]  Xiaobo Ji,et al.  Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. , 2014, ACS applied materials & interfaces.

[56]  Chilin Li,et al.  Sodium Storage and Pseudocapacitive Charge in Textured Li4Ti5O12 Thin Films , 2014 .

[57]  Denis Y. W. Yu,et al.  Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries , 2014, Scientific Reports.

[58]  A. Ciesielski,et al.  Graphene via sonication assisted liquid-phase exfoliation. , 2014, Chemical Society reviews.

[59]  Petr V Prikhodchenko,et al.  High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries , 2013, Nature Communications.

[60]  Yuyan Shao,et al.  Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. , 2013, Nano letters.

[61]  Xiaozhong Zhou,et al.  Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance , 2013 .

[62]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[63]  Yi Xie,et al.  Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. , 2012, Journal of the American Chemical Society.

[64]  Sudip Kumar Batabyal,et al.  Conversion of Hydroperoxoantimonate Coated Graphenes to Sb2S3@Graphene for a Superior Lithium Battery Anode , 2012 .

[65]  Fei Wei,et al.  Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. , 2012, ACS nano.

[66]  J. Coleman,et al.  Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size , 2012 .

[67]  Jun Li,et al.  Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route , 2012 .

[68]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[69]  M. Armand,et al.  Building better batteries , 2008, Nature.

[70]  A. Tang,et al.  Microwave synthesis of nanocrystalline Sb2S3 and its electrochemical properties , 2007 .

[71]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[72]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[73]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[74]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[75]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[76]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[77]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[78]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[79]  B. R. Chakraborty,et al.  Electrical and magnetic properties of antimony sulphide (Sb2S3) crystals and the mechanism of carrier transport in it , 1978 .

[80]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[81]  Charlie Tsai,et al.  Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. , 2016, Nature materials.

[82]  Jing Chen,et al.  Scalable Clean Exfoliation of High‐Quality Few‐Layer Black Phosphorus for a Flexible Lithium Ion Battery , 2016, Advanced materials.

[83]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.