Presynaptic Self-Depression at Developing Neocortical Synapses

[1]  D. Feldman The Spike-Timing Dependence of Plasticity , 2012, Neuron.

[2]  Arne V. Blackman,et al.  Target-Specific Expression of Presynaptic NMDA Receptors in Neocortical Microcircuits , 2012, Neuron.

[3]  Thomas Nevian,et al.  Astrocyte signaling controls spike timing–dependent depression at neocortical synapses , 2012, Nature Neuroscience.

[4]  Hazel A. Collins,et al.  Presynaptic Induction and Expression of Timing-Dependent Long-Term Depression Demonstrated by Compartment-Specific Photorelease of a Use-Dependent NMDA Receptor Antagonist , 2011, The Journal of Neuroscience.

[5]  Wulfram Gerstner,et al.  A History of Spike-Timing-Dependent Plasticity , 2011, Front. Syn. Neurosci..

[6]  P. Paoletti Molecular basis of NMDA receptor functional diversity , 2011, The European journal of neuroscience.

[7]  Alison L. Barth,et al.  Input-Specific Critical Periods for Experience-Dependent Plasticity in Layer 2/3 Pyramidal Neurons , 2011, The Journal of Neuroscience.

[8]  S. Lipton,et al.  NR3A-containing NMDARs promote neurotransmitter release and spike timing–dependent plasticity , 2011, Nature Neuroscience.

[9]  P. Donnelly,et al.  Presynaptic NMDARs in the Hippocampus Facilitate Transmitter Release at Theta Frequency , 2010, Neuron.

[10]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[11]  Boris Barbour,et al.  Presynaptic NR2A-containing NMDA receptors implement a high-pass filter synaptic plasticity rule , 2009, Proceedings of the National Academy of Sciences.

[12]  O. Paulsen,et al.  Double Dissociation of Spike Timing–Dependent Potentiation and Depression by Subunit-Preferring NMDA Receptor Antagonists in Mouse Barrel Cortex , 2009, Cerebral cortex.

[13]  K. Fox,et al.  Sensory Deprivation Unmasks a PKA-Dependent Synaptic Plasticity Mechanism that Operates in Parallel with CaMKII , 2008, Neuron.

[14]  D. Feldman,et al.  Presynaptic NMDA Receptors: Newly Appreciated Roles in Cortical Synaptic Function and Plasticity , 2008, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[15]  Ole Paulsen,et al.  Spike timing–dependent long-term depression requires presynaptic NMDA receptors , 2008, Nature Neuroscience.

[16]  S. Dudek,et al.  Synapse elimination accompanies functional plasticity in hippocampal neurons , 2008, Proceedings of the National Academy of Sciences.

[17]  B. Sakmann,et al.  Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[18]  Y. Shinoda,et al.  Long‐lasting synaptic loss after repeated induction of LTD: independence to the means of LTD induction , 2006, The European journal of neuroscience.

[19]  Per Jesper Sjöström,et al.  Novel presynaptic mechanisms for coincidence detection in synaptic plasticity , 2006, Current Opinion in Neurobiology.

[20]  Vanessa A. Bender,et al.  Two Coincidence Detectors for Spike Timing-Dependent Plasticity in Somatosensory Cortex , 2006, The Journal of Neuroscience.

[21]  Michael J. Gutnick,et al.  NMDA Receptors in Layer 4 Spiny Stellate Cells of the Mouse Barrel Cortex Contain the NR2C Subunit , 2006, The Journal of Neuroscience.

[22]  Michael Brecht,et al.  Map Plasticity in Somatosensory Cortex , 2005, Science.

[23]  P. J. Sjöström,et al.  Endocannabinoid-dependent neocortical layer-5 LTD in the absence of postsynaptic spiking. , 2004, Journal of neurophysiology.

[24]  P. J. Sjöström,et al.  Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors , 2003, Neuron.

[25]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[26]  D. Feldman Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[27]  T. Sejnowski,et al.  Natural patterns of activity and long-term synaptic plasticity , 2000, Current Opinion in Neurobiology.

[28]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[29]  D. Debanne,et al.  Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures , 1998, The Journal of physiology.

[30]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[31]  K. Fox,et al.  Mechanisms underlying experience-dependent potentiation and depression of vibrissae responses in barrel cortex , 1996, Journal of Physiology-Paris.

[32]  T. Tsumoto,et al.  An inhibitor for calcineurin, FK506, blocks induction of long-term depression in rat visual cortex , 1995, Neuroscience Letters.

[33]  R. Malenka,et al.  Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression , 1994, Nature.

[34]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[35]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Stryker,et al.  Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[38]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[39]  G. Stent A physiological mechanism for Hebb's postulate of learning. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.