Long-Term Potentiation

[1]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[2]  J. Hell,et al.  Age‐dependent requirement of AKAP150‐anchored PKA and GluR2‐lacking AMPA receptors in LTP , 2007, The EMBO journal.

[3]  Robert J Richardson,et al.  Slow Presynaptic and Fast Postsynaptic Components of Compound Long-Term Potentiation , 2007, The Journal of Neuroscience.

[4]  B. Vissel,et al.  Long-term potentiation in the hippocampal CA1 region does not require insertion and activation of GluR2-lacking AMPA receptors. , 2007, Journal of neurophysiology.

[5]  Leslie C Griffith,et al.  A structural mechanism for maintaining the ‘on‐state’ of the CaMKII memory switch in the post‐synaptic density , 2007, Journal of neurochemistry.

[6]  Y. Dudai,et al.  Rapid Erasure of Long-Term Memory Associations in the Cortex by an Inhibitor of PKMζ , 2007, Science.

[7]  J. Hell,et al.  Displacement of alpha-actinin from the NMDA receptor NR1 C0 domain By Ca2+/calmodulin promotes CaMKII binding. , 2007, Biochemistry.

[8]  Gary Lynch,et al.  Changes in Synaptic Morphology Accompany Actin Signaling during LTP , 2007, The Journal of Neuroscience.

[9]  J. Lisman,et al.  Reversal of Synaptic Memory by Ca2+/Calmodulin-Dependent Protein Kinase II Inhibitor , 2007, The Journal of Neuroscience.

[10]  H. Adesnik,et al.  Conservation of Glutamate Receptor 2-Containing AMPA Receptors during Long-Term Potentiation , 2007, The Journal of Neuroscience.

[11]  John F. Crary,et al.  Regulation of Protein Kinase Mζ Synthesis by Multiple Kinases in Long-Term Potentiation , 2007, The Journal of Neuroscience.

[12]  Daniel Choquet,et al.  The Interaction between Stargazin and PSD-95 Regulates AMPA Receptor Surface Trafficking , 2007, Neuron.

[13]  E. Ziff TARPs and the AMPA Receptor Trafficking Paradox , 2007, Neuron.

[14]  R. Huganir,et al.  Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Kazushi Fujimoto,et al.  Number and Density of AMPA Receptors in Individual Synapses in the Rat Cerebellum as Revealed by SDS-Digested Freeze-Fracture Replica Labeling , 2007, The Journal of Neuroscience.

[16]  Tsutomu Hashikawa,et al.  Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin , 2007, Nature Neuroscience.

[17]  D. Rusakov,et al.  CaMKII translocation requires local NMDA receptor‐mediated Ca2+ signaling , 2006, The EMBO journal.

[18]  Anastassios V. Tzingounis,et al.  Arc/Arg3.1: Linking Gene Expression to Synaptic Plasticity and Memory , 2006, Neuron.

[19]  B. Sakmann,et al.  Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[20]  Lars Funke,et al.  Synapse-Specific and Developmentally Regulated Targeting of AMPA Receptors by a Family of MAGUK Scaffolding Proteins , 2006, Neuron.

[21]  S. Raghavachari,et al.  A Unified Model of the Presynaptic and Postsynaptic Changes During LTP at CA1 Synapses , 2006, Science's STKE.

[22]  E. Pastalkova,et al.  Storage of Spatial Information by the Maintenance Mechanism of LTP , 2006, Science.

[23]  Jonathan R. Whitlock,et al.  Learning Induces Long-Term Potentiation in the Hippocampus , 2006, Science.

[24]  P. Stanton,et al.  BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses , 2006, The Journal of physiology.

[25]  Shaomin Li,et al.  Distinct Roles for Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) and Ras-GRF2 in the Induction of Long-Term Potentiation and Long-Term Depression , 2006, The Journal of Neuroscience.

[26]  Roberto Malinow,et al.  Synaptic Incorporation of AMPA Receptors during LTP Is Controlled by a PKC Phosphorylation Site on GluR1 , 2006, Neuron.

[27]  Kevin Fox,et al.  The Role of Nitric Oxide and GluR1 in Presynaptic and Postsynaptic Components of Neocortical Potentiation , 2006, The Journal of Neuroscience.

[28]  Irving R Epstein,et al.  Role of the Neurogranin Concentrated in Spines in the Induction of Long-Term Potentiation , 2006, The Journal of Neuroscience.

[29]  Johannes J. Letzkus,et al.  Requirement of dendritic calcium spikes for induction of spike‐timing‐dependent synaptic plasticity , 2006, The Journal of physiology.

[30]  C. Stevens,et al.  Temperature-Dependent Shift of Balance among the Components of Short-Term Plasticity in Hippocampal Synapses , 2006, The Journal of Neuroscience.

[31]  J. Sweatt,et al.  Kinase Suppressor of Ras1 Compartmentalizes Hippocampal Signal Transduction and Subserves Synaptic Plasticity and Memory Formation , 2006, Neuron.

[32]  E. Schuman,et al.  Miniature Neurotransmission Stabilizes Synaptic Function via Tonic Suppression of Local Dendritic Protein Synthesis , 2006, Cell.

[33]  G. Collingridge,et al.  Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation , 2006, Nature Neuroscience.

[34]  C. Lüscher,et al.  Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression , 2006, Nature Neuroscience.

[35]  J. Zhu,et al.  Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity , 2006, Neuron.

[36]  T. Abel,et al.  Metaplasticity of the late‐phase of long‐term potentiation: a critical role for protein kinase A in synaptic tagging , 2006, The European journal of neuroscience.

[37]  T. Bonhoeffer,et al.  Hippocampal Long-Term Potentiation Is Supported by Presynaptic and Postsynaptic Tyrosine Receptor Kinase B-Mediated Phospholipase Cγ Signaling , 2006, The Journal of Neuroscience.

[38]  R. Hawkins,et al.  Presynaptic and postsynaptic Ca(2+) and CamKII contribute to long-term potentiation at synapses between individual CA3 neurons. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Tobias Bonhoeffer,et al.  Neuronal activity determines the protein synthesis dependence of long-term potentiation , 2006, Nature Neuroscience.

[40]  R. Nicoll,et al.  Auxiliary Subunits Assist AMPA-Type Glutamate Receptors , 2006, Science.

[41]  R. Malenka,et al.  Transsynaptic Signaling by Postsynaptic Synapse-Associated Protein 97 , 2006, The Journal of Neuroscience.

[42]  Alcino J. Silva,et al.  Matrix Metalloproteinase-9 Is Required for Hippocampal Late-Phase Long-Term Potentiation and Memory , 2006, The Journal of Neuroscience.

[43]  Agnès Gruart,et al.  Involvement of the CA3–CA1 Synapse in the Acquisition of Associative Learning in Behaving Mice , 2006, The Journal of Neuroscience.

[44]  T. Soderling,et al.  Extrasynaptic Membrane Trafficking Regulated by GluR1 Serine 845 Phosphorylation Primes AMPA Receptors for Long-term Potentiation* , 2006, Journal of Biological Chemistry.

[45]  I. Izquierdo,et al.  Memory consolidation induces N-methyl-d-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties , 2005, Neuroscience.

[46]  Hillel Adesnik,et al.  Photoinactivation of Native AMPA Receptors Reveals Their Real-Time Trafficking , 2005, Neuron.

[47]  J. Hell,et al.  Activity-driven postsynaptic translocation of CaMKII. , 2005, Trends in pharmacological sciences.

[48]  R. Malinow,et al.  NMDA Receptor Subunit Composition Controls Synaptic Plasticity by Regulating Binding to CaMKII , 2005, Neuron.

[49]  R. Tsien,et al.  Adaptation to Synaptic Inactivity in Hippocampal Neurons , 2005, Neuron.

[50]  G. Collingridge,et al.  Hippocalcin Functions as a Calcium Sensor in Hippocampal LTD , 2005, Neuron.

[51]  M. Wolf,et al.  Dopamine Receptor Stimulation Modulates AMPA Receptor Synaptic Insertion in Prefrontal Cortex Neurons , 2005, The Journal of Neuroscience.

[52]  John D. Scott,et al.  Association of an A-kinase-anchoring protein signaling scaffold with cadherin adhesion molecules in neurons and epithelial cells. , 2005, Molecular biology of the cell.

[53]  Wade Morishita,et al.  Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses , 2005, Nature Neuroscience.

[54]  S. Wang,et al.  Graded bidirectional synaptic plasticity is composed of switch-like unitary events. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  V. Derkach,et al.  Dominant role of the GluR2 subunit in regulation of AMPA receptors by CaMKII , 2005, Nature Neuroscience.

[56]  J. Zhu,et al.  Rap2-JNK Removes Synaptic AMPA Receptors during Depotentiation , 2005, Neuron.

[57]  Ravi Iyengar,et al.  Local Protein Synthesis Mediates a Rapid Increase in Dendritic Elongation Factor 1A after Induction of Late Long-Term Potentiation , 2005, The Journal of Neuroscience.

[58]  J. Lisman,et al.  The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory , 2005, Neuron.

[59]  C. Bramham,et al.  BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis , 2005, Progress in Neurobiology.

[60]  Joseph E LeDoux,et al.  Postsynaptic Receptor Trafficking Underlying a Form of Associative Learning , 2005, Science.

[61]  Xiao-Jing Wang,et al.  The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover , 2005, PLoS biology.

[62]  T. Soderling,et al.  Calmodulin-dependent Kinase Kinase/calmodulin Kinase I Activity Gates Extracellular-regulated Kinase-dependent Long-term Potentiation Intracellular Ca 2ϩ and Protein Phosphorylation Play Pivotal Roles in Long-term Potentiation (ltp), a Cellular Model of Learning and Memory. Ca 2ϩ Regulates Multiple , 2005 .

[63]  A. Matus Growth of dendritic spines: a continuing story , 2005, Current Opinion in Neurobiology.

[64]  David W. Nauen,et al.  Coactivation and timing-dependent integration of synaptic potentiation and depression , 2005, Nature Neuroscience.

[65]  R. Nicoll,et al.  Bidirectional Synaptic Plasticity Regulated by Phosphorylation of Stargazin-like TARPs , 2005, Neuron.

[66]  Mu-ming Poo,et al.  Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses , 2004, Neuron.

[67]  R. Huganir,et al.  Imaging of receptor trafficking by using α-bungarotoxin-binding-site-tagged receptors , 2004 .

[68]  John Lisman,et al.  Persistent Accumulation of Calcium/Calmodulin-Dependent Protein Kinase II in Dendritic Spines after Induction of NMDA Receptor-Dependent Chemical Long-Term Potentiation , 2004, The Journal of Neuroscience.

[69]  Petti T. Pang,et al.  Cleavage of proBDNF by tPA/Plasmin Is Essential for Long-Term Hippocampal Plasticity , 2004, Science.

[70]  A. Phillips,et al.  Modulation of dopamine mediated phosphorylation of AMPA receptors by PSD-95 and AKAP79/150 , 2004, Neuropharmacology.

[71]  Takeharu Nagai,et al.  Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity , 2004, Nature Neuroscience.

[72]  S. Raghavachari,et al.  Properties of quantal transmission at CA1 synapses. , 2004, Journal of neurophysiology.

[73]  W. Abraham,et al.  Dopamine D1/D5 receptor activation fails to initiate an activity-independent late-phase LTP in rat hippocampus , 2004, Brain Research.

[74]  D. Clapham,et al.  SynGAP-MUPP1-CaMKII Synaptic Complexes Regulate p38 MAP Kinase Activity and NMDA Receptor- Dependent Synaptic AMPA Receptor Potentiation , 2004, Neuron.

[75]  J. Lisman,et al.  Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. , 2004, Journal of neurophysiology.

[76]  M. Kennedy,et al.  Regulation of the Neuron-specific Ras GTPase-activating Protein, synGAP, by Ca2+/Calmodulin-dependent Protein Kinase II* , 2004, Journal of Biological Chemistry.

[77]  Yi Zhou,et al.  The eag Potassium Channel Binds and Locally Activates Calcium/Calmodulin-dependent Protein Kinase II* , 2004, Journal of Biological Chemistry.

[78]  R. Colbran,et al.  Targeting of calcium/calmodulin-dependent protein kinase II. , 2004, The Biochemical journal.

[79]  Hyejin Kang,et al.  Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory , 2004, Cell.

[80]  Bert Sakmann,et al.  A Juvenile form of Postsynaptic Hippocampal Long‐Term Potentiation in Mice Deficient for the AMPA Receptor Subunit GluR‐A , 2003, The Journal of physiology.

[81]  Jenny Libien,et al.  Protein Kinase Mζ Synthesis from a Brain mRNA Encoding an Independent Protein Kinase Cζ Catalytic Domain , 2003, Journal of Biological Chemistry.

[82]  J. Magee,et al.  Impaired Regulation of Synaptic Strength in Hippocampal Neurons from GluR1‐Deficient Mice , 2003, The Journal of physiology.

[83]  E. Kandel,et al.  Presynaptic BDNF Required for a Presynaptic but Not Postsynaptic Component of LTP at Hippocampal CA1-CA3 Synapses , 2003, Neuron.

[84]  P. Dutar,et al.  Different phosphatase‐dependent mechanisms mediate long‐term depression and depotentiation of long‐term potentiation in mouse hippocampal CA1 area , 2003, The European journal of neuroscience.

[85]  S. Nelson,et al.  Activity-Dependent Remodeling of Presynaptic Inputs by Postsynaptic Expression of Activated CaMKII , 2003, Neuron.

[86]  D. O’Malley,et al.  Insulin inhibits rat hippocampal neurones via activation of ATP-sensitive K+ and large conductance Ca2+-activated K+ channels , 2003, Neuropharmacology.

[87]  Yasuhiko Ohta,et al.  Hippocampal LTP Is Accompanied by Enhanced F-Actin Content within the Dendritic Spine that Is Essential for Late LTP Maintenance In Vivo , 2003, Neuron.

[88]  R. Nicoll,et al.  Expression mechanisms underlying long-term potentiation: a postsynaptic view. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[89]  R. Tsien,et al.  Fusion pore modulation as a presynaptic mechanism contributing to expression of long-term potentiation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[90]  Kristen M Harris,et al.  Structural changes at dendritic spine synapses during long-term potentiation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[91]  Roberto Malinow,et al.  PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity , 2003, Nature Neuroscience.

[92]  M. Egan,et al.  The BDNF val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function , 2003, Cell.

[93]  J. Frey,et al.  Quantal analysis suggests strong involvement of presynaptic mechanisms during the initial 3 h maintenance of long-term potentiation in rat hippocampal CA1 area in vitro , 2002, Brain Research.

[94]  W. Abraham,et al.  Induction and Experience-Dependent Consolidation of Stable Long-Term Potentiation Lasting Months in the Hippocampus , 2002, The Journal of Neuroscience.

[95]  R. Nicoll,et al.  Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  S. Siegelbaum,et al.  Altered Presynaptic Vesicle Release and Cycling during mGluR-Dependent LTD , 2002, Neuron.

[97]  R. Malinow,et al.  Ras and Rap Control AMPA Receptor Trafficking during Synaptic Plasticity , 2002, Cell.

[98]  J. Fiala,et al.  Polyribosomes Redistribute from Dendritic Shafts into Spines with Enlarged Synapses during LTP in Developing Rat Hippocampal Slices , 2002, Neuron.

[99]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[100]  J. Macdonald,et al.  Abnormal Spine Morphology and Enhanced LTP in LIMK-1 Knockout Mice , 2002, Neuron.

[101]  D. Johnston,et al.  Protein Kinase Modulation of Dendritic K+ Channels in Hippocampus Involves a Mitogen-Activated Protein Kinase Pathway , 2002, The Journal of Neuroscience.

[102]  Shigeo Watanabe,et al.  Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Roberto Malinow,et al.  Multiple Mechanisms for the Potentiation of AMPA Receptor-Mediated Transmission by α-Ca2+/Calmodulin-Dependent Protein Kinase II , 2002, The Journal of Neuroscience.

[104]  E. Ziff,et al.  Receptor trafficking and the plasticity of excitatory synapses , 2002, Current Opinion in Neurobiology.

[105]  B. Sakmann,et al.  Molecular dissection of hippocampal theta-burst pairing potentiation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[106]  John F. Crary,et al.  Protein kinase Mζ is necessary and sufficient for LTP maintenance , 2002, Nature Neuroscience.

[107]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[108]  Arthur Konnerth,et al.  Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation , 2002, Science.

[109]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[110]  R. Heumann,et al.  Synaptic secretion of BDNF after high‐frequency stimulation of glutamatergic synapses , 2001, The EMBO journal.

[111]  G. Lynch,et al.  Evidence that integrins contribute to multiple stages in the consolidation of long term potentiation in rat hippocampus , 2001, Neuroscience.

[112]  V. Piëch,et al.  Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons , 2001, Nature Neuroscience.

[113]  J. Lisman,et al.  A Model of Synaptic Memory A CaMKII/PP1 Switch that Potentiates Transmission by Organizing an AMPA Receptor Anchoring Assembly , 2001, Neuron.

[114]  W. Tyler,et al.  BDNF Enhances Quantal Neurotransmitter Release and Increases the Number of Docked Vesicles at the Active Zones of Hippocampal Excitatory Synapses , 2001, The Journal of Neuroscience.

[115]  Paul De Koninck,et al.  Interaction with the NMDA receptor locks CaMKII in an active conformation , 2001, Nature.

[116]  Y. Ishikawa,et al.  Biological characterization and optical imaging of brain‐derived neurotrophic factor‐green fluorescent protein suggest an activity‐dependent local release of brain‐derived neurotrophic factor in neurites of cultured hippocampal neurons , 2001, Journal of neuroscience research.

[117]  J. Roder,et al.  CAKβ/Pyk2 Kinase Is a Signaling Link for Induction of Long-Term Potentiation in CA1 Hippocampus , 2001, Neuron.

[118]  R. Morris,et al.  Retrograde Amnesia for Spatial Memory Induced by NMDA Receptor-Mediated Long-Term Potentiation , 2001, The Journal of Neuroscience.

[119]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[120]  M. Ehlers,et al.  Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting , 2000, Neuron.

[121]  K. Reymann,et al.  Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[122]  R. Nicoll,et al.  The Role of Brain-Derived Neurotrophic Factor Receptors in the Mature Hippocampus: Modulation of Long-Term Potentiation through a Presynaptic Mechanism involving TrkB , 2000, The Journal of Neuroscience.

[123]  M. Bear,et al.  Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity , 2000, Nature.

[124]  S. Halpain,et al.  Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[125]  W. Gispen,et al.  Activation of pre- and postsynaptic protein kinase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus , 2000, Neuroscience Letters.

[126]  E. Schuman,et al.  Intracellular Ca2+ signaling is required for neurotrophin-induced potentiation in the adult rat hippocampus , 2000, Neuroscience Letters.

[127]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[128]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[129]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[130]  R. Huganir,et al.  Control of GluR1 AMPA Receptor Function by cAMP-Dependent Protein Kinase , 2000, The Journal of Neuroscience.

[131]  Louis J Muglia,et al.  Calcium-Stimulated Adenylyl Cyclase Activity Is Critical for Hippocampus-Dependent Long-Term Memory and Late Phase LTP , 1999, Neuron.

[132]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[133]  O. Paulsen,et al.  Rapid report: postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. , 1999, The Journal of physiology.

[134]  J. Lübke,et al.  Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. , 1999, Science.

[135]  John E. Lisman,et al.  A Role of Actin Filament in Synaptic Transmission and Long-Term Potentiation , 1999, The Journal of Neuroscience.

[136]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[137]  K. Shen,et al.  Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. , 1999, Science.

[138]  D. Storm,et al.  Interactions between Neurogranin and Calmodulin in Vivo * , 1999, The Journal of Biological Chemistry.

[139]  J. Hell,et al.  Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[140]  T. Soderling,et al.  Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[141]  N. Seidah,et al.  Differential Sorting of Nerve Growth Factor and Brain-Derived Neurotrophic Factor in Hippocampal Neurons , 1999, The Journal of Neuroscience.

[142]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[143]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[144]  Scott T. Wong,et al.  Cross Talk between ERK and PKA Is Required for Ca2+ Stimulation of CREB-Dependent Transcription and ERK Nuclear Translocation , 1998, Neuron.

[145]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[146]  R. Colbran,et al.  Autophosphorylation-dependent Targeting of Calcium/ Calmodulin-dependent Protein Kinase II by the NR2B Subunit of theN-Methyl- d-aspartate Receptor* , 1998, The Journal of Biological Chemistry.

[147]  Andreas Lüthi,et al.  Modulation of AMPA receptor unitary conductance by synaptic activity , 1998, Nature.

[148]  Chou P Hung,et al.  A Role for the Cadherin Family of Cell Adhesion Molecules in Hippocampal Long-Term Potentiation , 1998, Neuron.

[149]  M. Kennedy,et al.  A Synaptic Ras-GTPase Activating Protein (p135 SynGAP) Inhibited by CaM Kinase II , 1998, Neuron.

[150]  J. Hopfield,et al.  All-or-none potentiation at CA3-CA1 synapses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[151]  J. Roder,et al.  Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. , 1998, Science.

[152]  Alcino J. Silva,et al.  Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. , 1998, Science.

[153]  R. Nicoll,et al.  Postsynaptic membrane fusion and long-term potentiation. , 1998, Science.

[154]  M. Krug,et al.  Dopamine D1‐deficient mutant mice do not express the late phase of hippocampal long‐term potentiation , 1997, Neuroreport.

[155]  E. Schuman,et al.  Neurotrophins and Time: Different Roles for TrkB Signaling in Hippocampal Long-Term Potentiation , 1997, Neuron.

[156]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[157]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[158]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[159]  S. Tonegawa,et al.  The Essential Role of Hippocampal CA1 NMDA Receptor–Dependent Synaptic Plasticity in Spatial Memory , 1996, Cell.

[160]  Eric R Kandel,et al.  Long-Term Potentiation Is Reduced in Mice That Are Doubly Mutant in Endothelial and Neuronal Nitric Oxide Synthase , 1996, Cell.

[161]  T. Teyler,et al.  Two forms of long-term potentiation in area CA1 activate different signal transduction cascades. , 1996, Journal of neurophysiology.

[162]  E. Schuman,et al.  A Requirement for Local Protein Synthesis in Neurotrophin-Induced Hippocampal Synaptic Plasticity , 1996, Science.

[163]  Sabina Hrabetova,et al.  Bidirectional Regulation of Protein Kinase Mζ in the Maintenance of Long-Term Potentiation and Long-Term Depression , 1996, The Journal of Neuroscience.

[164]  D. Muller,et al.  Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[165]  B. Lu,et al.  Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus , 1996, Nature.

[166]  R. Huganir,et al.  Characterization of Multiple Phosphorylation Sites on the AMPA Receptor GluR1 Subunit , 1996, Neuron.

[167]  U. Staubli,et al.  The induction of homo- vs. heterosynaptic LTD in area CA1 of hippocampal slices from adult rats , 1996, Brain Research.

[168]  R. Nicoll,et al.  Ca2+ Signaling Requirements for Long-Term Depression in the Hippocampus , 1996, Neuron.

[169]  R. Wenthold,et al.  Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[170]  S. Redman,et al.  Changes in quantal parameters of EPSCs in rat CA1 neurones in vitro after the induction of long‐term potentiation. , 1996, The Journal of physiology.

[171]  Y. Ben-Ari,et al.  Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus. , 1995, Journal of neurophysiology.

[172]  R. Nicoll,et al.  Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[173]  J. Lisman,et al.  Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro , 1995, Neuron.

[174]  M. Mayer,et al.  Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block , 1995, Neuron.

[175]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[176]  Sunjeev K Kamboj,et al.  Intracellular spermine confers rectification on rat calcium‐permeable AMPA and kainate receptors. , 1995, The Journal of physiology.

[177]  P. Jonas,et al.  Block of native Ca(2+)‐permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. , 1995, The Journal of physiology.

[178]  J. Connor,et al.  Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice , 1995, Neuron.

[179]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[180]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[181]  Dominique Muller,et al.  Increased Phosphorylation of Ca/Calmodulin-dependent Protein Kinase II and Its Endogenous Substrates in the Induction of Long Term Potentiation (*) , 1995, The Journal of Biological Chemistry.

[182]  A. Lüthi,et al.  Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM , 1994, Nature.

[183]  Alcino J. Silva,et al.  Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein , 1994, Cell.

[184]  E R Kandel,et al.  Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. , 1994, Science.

[185]  R. Malenka,et al.  Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression , 1994, Nature.

[186]  J. Connor,et al.  Calcium signaling in dendritic spines of hippocampal neurons. , 1994, Journal of neurobiology.

[187]  C. Davies,et al.  The physiological regulation of synaptic inhibition by GABAB autoreceptors in rat hippocampus. , 1993, The Journal of physiology.

[188]  R. Nicoll,et al.  Evidence for all‐or‐none regulation of neurotransmitter release: implications for long‐term potentiation. , 1993, The Journal of physiology.

[189]  E. Krebs,et al.  Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[190]  P. Gluckman,et al.  Brain-derived neurotrophic factor expression after long-term potentiation , 1993, Neuroscience Letters.

[191]  F. Huang,et al.  Characterization of a 7.5-kDa protein kinase C substrate (RC3 protein, neurogranin) from rat brain. , 1993, Archives of biochemistry and biophysics.

[192]  E. Castrén,et al.  The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. , 1993, Neuroreport.

[193]  P. Seeburg,et al.  Mammalian ionotropic glutamate receptors , 1993, Current Opinion in Neurobiology.

[194]  D. Muller,et al.  Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. , 1993, The Journal of biological chemistry.

[195]  Kristen M. Harris,et al.  Quantal analysis and synaptic anatomy — integrating two views of hippocampal plasticity , 1993, Trends in Neurosciences.

[196]  P. Schwartzkroin,et al.  Neurotrophin expression in rat hippocampal slices: A stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs , 1992, Neuron.

[197]  R. Malinow,et al.  Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus , 1992, Neuron.

[198]  R. Malenka,et al.  Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus , 1992, Neuron.

[199]  J. Eberwine,et al.  Stimulus-induced coordinate changes in mRNA abundance in single postsynaptic hippocampal CA1 neurons , 1992, Neuron.

[200]  H. Wigström,et al.  The Relative Contribution of NMDA Receptor Channels in the Expression of Long‐term Potentiation in the Hippocampal CA1 Region , 1992, The European journal of neuroscience.

[201]  Alcino J. Silva,et al.  Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. , 1992, Science.

[202]  T. Teyler,et al.  N-methyl-d-aspartate receptor-independent long-term potentiation in area CA1 of rat hippocampus: Input-specific induction and preclusion in a non-tetanized pathway , 1992, Neuroscience.

[203]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[204]  R. Nicoll,et al.  Long-term potentiation is associated with increases in quantal content and quantal amplitude , 1992, Nature.

[205]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[206]  R. Nicoll,et al.  Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents , 1992, Nature.

[207]  E. Kandel,et al.  Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[208]  D. Madison,et al.  A requirement for the intercellular messenger nitric oxide in long-term potentiation. , 1991, Science.

[209]  U. Frey,et al.  The effect of dopaminergic D1 receptor blockade during tetanization on the expression of long-term potentiation in the rat CA1 region in vitro , 1991, Neuroscience Letters.

[210]  G. Böhme,et al.  Possible involvement of nitric oxide in long-term potentiation. , 1991, European journal of pharmacology.

[211]  R. Malinow Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP. , 1991, Science.

[212]  G. Collingridge,et al.  GABAB autoreceptors regulate the induction of LTP , 1991, Nature.

[213]  Lawrence M. Grover,et al.  Two components of long-term potentiation induced by different patterns of afferent activation , 1990, Nature.

[214]  S N Davies,et al.  Paired‐pulse depression of monosynaptic GABA‐mediated inhibitory postsynaptic responses in rat hippocampus. , 1990, The Journal of physiology.

[215]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[216]  R. Tsien,et al.  Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. , 1989, Science.

[217]  Andrew J. Cole,et al.  Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation , 1989, Nature.

[218]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[219]  T. Soderling,et al.  Ca2+/calmodulin-dependent protein kinase II. Identification of a regulatory autophosphorylation site adjacent to the inhibitory and calmodulin-binding domains. , 1988, The Journal of biological chemistry.

[220]  Stephen G. Miller,et al.  Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity , 1988, Neuron.

[221]  U. Frey,et al.  Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro , 1988, Brain Research.

[222]  M. Mayer,et al.  Permeation and block of N‐methyl‐D‐aspartic acid receptor channels by divalent cations in mouse cultured central neurones. , 1987, The Journal of physiology.

[223]  R. Dingledine,et al.  Involvement of N-methyl-d-aspartate Receptors in Involvement of N-methyl-d-aspartate Receptors in Epileptiform Bursting in the Rat Hippocampal Slice , 2008 .

[224]  S. Kelso,et al.  Hebbian synapses in hippocampus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[225]  R. Malinow,et al.  Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation , 1986, Nature.

[226]  M. Kennedy,et al.  Regulation of brain Type II Ca 2+ calmodulin -dependent protein kinase by autophosphorylation: A Ca2+-triggered molecular switch , 1986, Cell.

[227]  G. Collingridge,et al.  A selective N-methyl-d-aspartate antagonist depresses epileptiform activity in rat hippocampal slices , 1985, Neuroscience Letters.

[228]  A. Ganong,et al.  Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors , 1984, Brain Research.

[229]  J. Sarvey,et al.  Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[230]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[231]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[232]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[233]  H. Wigström,et al.  Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition , 1983, Nature.

[234]  W. Levy,et al.  Synapses as associative memory elements in the hippocampal formation , 1979, Brain Research.

[235]  B. McNaughton,et al.  Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents , 1978, Brain Research.

[236]  Alison L. Barth,et al.  A developmental switch in the signaling cascades for LTP induction , 2003, Nature Neuroscience.

[237]  J. Sweatt,et al.  Molecular psychology: roles for the ERK MAP kinase cascade in memory. , 2002, Annual review of pharmacology and toxicology.

[238]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[239]  G. Lynch,et al.  Factors governing the potentiation of NMDA receptor‐mediated responses in Hippocampus , 1992, Hippocampus.

[240]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[241]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.