Evolving connectionist systems - the knowledge engineering approach (2. ed.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi Part I Evolving Connectionist Methods

[1]  Jacek M. Zurada,et al.  Pruning via Dynamic Adaptation of the Forgetting Rate in Structural Learning , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[2]  Christopher G. Atkeson,et al.  Constructive Incremental Learning from Only Local Information , 1998, Neural Computation.

[3]  L. Medsker,et al.  Design and development of hybrid neural network and expert systems , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[4]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[5]  Samuel Russell Hampden Joseph,et al.  Theories of adaptive neural growth , 1998 .

[6]  Nicolaos B. Karayiannis,et al.  Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques , 1997, IEEE Trans. Neural Networks.

[7]  Nikola Kasabov,et al.  Neuro-Fuzzy Techniques for Intelligent Information Systems , 1999 .

[8]  Ben-Qiong Hu,et al.  Quantum Pattern Recognition of Classical Signal , 2007 .

[9]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[10]  J. G. Taylor,et al.  From Wetware to Hardware: Reverse Engineering Using Probabilistic RAMs , 1992 .

[11]  Nikola K. Kasabov,et al.  Gene Regulatory Network Discovery from Time-Series Gene Expression Data - A Computational Intelligence Approach , 2004, ICONIP.

[12]  S. Grossberg,et al.  ART 2: self-organization of stable category recognition codes for analog input patterns. , 1987, Applied optics.

[13]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  Phil Husbands,et al.  Evolutionary robotics , 2014, Evolutionary Intelligence.

[15]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[16]  G. W. Hatfield,et al.  DNA microarrays and gene expression , 2002 .

[17]  Shaoning Pang,et al.  Incremental linear discriminant analysis for classification of data streams , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  P G Baker,et al.  Recent developments in biological sequence databases. , 1998, Current opinion in biotechnology.

[19]  James C. Bezdek,et al.  A Review of Probabilistic, Fuzzy, and Neural Models for Pattern Recognition , 1996, J. Intell. Fuzzy Syst..

[20]  Nikola K. Kasabov,et al.  HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems , 1999, Neural Networks.

[21]  Joel White,et al.  Odor recognition in an artificial nose by spatio-temporal processing using an olfactory neuronal network , 1999, Neurocomputing.

[22]  David Zhang,et al.  An adaptive model of person identification combining speech and image information , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[23]  David G. Stork Sources of Neural Structure in Speech and Language Processing , 1991, Int. J. Neural Syst..

[24]  Madan M. Gupta Fuzzy logic and neural networks , 1992, [Proceedings 1992] IEEE International Conference on Systems Engineering.

[25]  Michael A. Gibson,et al.  Modeling the Activity of Single Genes , 1999 .

[26]  Nikola Kasabov,et al.  Evolving connectionist systems , 2002 .

[27]  C. L. Giles,et al.  Constructing deterministic finite-state automata in sparse recurrent neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[28]  J. J. Hopfield,et al.  ‘Unlearning’ has a stabilizing effect in collective memories , 1983, Nature.

[29]  Volker Tresp,et al.  Network Structuring and Training Using Rule-Based Knowledge , 1992, NIPS.

[30]  Eric O. Postma,et al.  AVIS: a connectionist-based framework for integrated auditory and visual information processing , 2000, Inf. Sci..

[31]  T. Poggio,et al.  Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  James A. Hendler,et al.  Integrating Neural Network and Expert Reasoning: An Example , 1991 .

[33]  Shigeo Abe,et al.  A method for fuzzy rules extraction directly from numerical data and its application to pattern classification , 1995, IEEE Trans. Fuzzy Syst..

[34]  Shaoning Pang,et al.  An Incremental Principal Component Analysis for Chunk Data , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[35]  C. A. Ferguson,et al.  Talking to Children , 1977 .

[36]  Tony R. Martinez,et al.  Quantum associative memory , 2000, Inf. Sci..

[37]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[38]  Ganesh K. Venayagamoorthy,et al.  Function Approximations with Multilayer Perceptrons and Simultaneous Recurrent Metworks , 2004 .

[39]  Kumar S. Ray,et al.  Neuro Fuzzy Approach to Pattern Recognition , 1997, Neural Networks.

[40]  Michael A. Arbib,et al.  The metaphorical brain : an introduction to cybernetics as artificial intelligence and brain theory , 1972 .

[41]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[42]  Michel Toulouse,et al.  Automatic Quantum Computer Programming: A Genetic Programming Approach , 2006, Genetic Programming and Evolvable Machines.

[43]  Sukumar Chakraborty,et al.  A neuro-fuzzy framework for inferencing , 2002, Neural Networks.

[44]  Stefan Wermter,et al.  A Hybrid Symbolic/Connectionist Model for Noun Phrase Understanding , 1989 .

[45]  Brian R Glasberg,et al.  Derivation of auditory filter shapes from notched-noise data , 1990, Hearing Research.

[46]  Abraham Kandel,et al.  Neuro-Fuzzy Pattern Recognition , 2000 .

[47]  Michael R. Green,et al.  Gene Expression , 1993, Progress in Gene Expression.

[48]  H. Robinson,et al.  Determining the activation time course of synaptic AMPA receptors from openings of colocalized NMDA receptors. , 1999, Biophysical journal.

[49]  Shigeo Abe,et al.  An Incremental Learning Algorithm of Ensemble Classifier Systems , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[50]  John A. Barnden,et al.  Encoding techniques for complex information structures in connectionist systems , 1991 .

[51]  Takeshi Aihara,et al.  Hippocampal LTP Depends on Spatial and Temporal Correlation of Inputs , 1996, Neural Networks.

[52]  Noam Chomsky,et al.  The Minimalist Program , 1992 .

[53]  Nikola K. Kasabov,et al.  On-line pattern analysis by evolving self-organizing maps , 2003, Neurocomputing.

[54]  Nikola Kasabov,et al.  Computational neurogenetic modeling: integration of spiking neural networks, gene networks, and signal processing techniques , 2004 .

[55]  Susan P. Worner,et al.  Dynamic Neuro-fuzzy Inference and Statistical Models for Risk Analysis of Pest Insect Establishment , 2004, ICONIP.

[56]  Stephen Grossberg,et al.  ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures , 1990, Neural Networks.

[57]  Kevin Bluff,et al.  Genetic optimisation of control parameters of a neural network , 1995, Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems.

[58]  M. Borodovsky,et al.  GeneMark.hmm: new solutions for gene finding. , 1998, Nucleic acids research.

[59]  Teuvo Kohonen,et al.  Self-Organizing Maps, Second Edition , 1997, Springer Series in Information Sciences.

[60]  Nobuyuki Matsui,et al.  Qubit neural network and its learning efficiency , 2005, Neural Computing & Applications.

[61]  Nikola K. Kasabov,et al.  The Application of Hybrid Evolving Connectionist Systems to Image Classification , 2000, J. Adv. Comput. Intell. Intell. Informatics.

[62]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[63]  Simei Gomes Wysoski,et al.  Computational Neurogenetic Modeling: A Methodology to Study Gene Interactions Underlying Neural Oscillations , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[64]  Andreas D. Baxevanis,et al.  The Molecular Biology Database Collection: an online compilation of relevant database resources , 2000, Nucleic Acids Res..

[65]  Shaoning Pang,et al.  Incremental learning for online face recognition , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[66]  Nikola K. Kasabov,et al.  Global, local and personalised modeling and pattern discovery in bioinformatics: An integrated approach , 2007, Pattern Recognit. Lett..

[67]  Simei Gomes Wysoski,et al.  On-Line Learning with Structural Adaptation in a Network of Spiking Neurons for Visual Pattern Recognition , 2006, ICANN.

[68]  Wolfgang Maass,et al.  Computing with spiking neurons , 1999 .

[69]  Mark S. Boguski,et al.  Bioinformatics–a new era , 1998 .

[70]  Joy Hirsch,et al.  Distinct cortical areas associated with native and second languages , 1997, Nature.

[71]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[72]  Martin Anthony,et al.  Computational learning theory: an introduction , 1992 .

[73]  Michael C. Mozer,et al.  Learning explicit rules in a neural network , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[74]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[75]  Nikola Kasabov,et al.  Evolutionary computation for dynamic parameter optimisation of evolving connectionist systems for on-line prediction of time series with changing dynamics , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[76]  D. D. Greenwood A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.

[77]  Nikola Kasabov,et al.  Estimating risk of events using SOM models: A case study on invasive species establishment , 2006 .

[78]  Teresa Bernarda Ludermir,et al.  Evolutionary strategies and genetic algorithms for dynamic parameter optimization of evolving fuzzy neural networks , 2005, 2005 IEEE Congress on Evolutionary Computation.

[79]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[80]  Richard J. Duro,et al.  Evolutionary generation and training of recurrent artificial neural networks , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[81]  David Saad,et al.  Online Learning in Radial Basis Function Networks , 1997, Neural Computation.

[82]  Liang Goh,et al.  An Integrated Feature Selection and Classification Method to Select Minimum Number of Variables on the Case Study of Gene Expression Data , 2005, J. Bioinform. Comput. Biol..

[83]  N. Kasabov,et al.  Linear and non-linear pattern recognition models for classification of fruit from visible–near infrared spectra , 2000 .

[84]  T. Sejnowski,et al.  Irresistible environment meets immovable neurons , 1997, Behavioral and Brain Sciences.

[85]  Lokendra Shastri,et al.  A Biological Grounding of Recruitment Learning and Vicinal Algorithms , 1999 .

[86]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[87]  R. Brown,et al.  Smoothing, Forecasting, and Prediction of Discrete Time Series , 1965 .

[88]  Nikola K. Kasabov,et al.  Integrating regression formulas and kernel functions into locally adaptive knowledge-based neural networks: A case study on renal function evaluation , 2006, Artif. Intell. Medicine.

[89]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[90]  Michael J. Watts,et al.  Adaptive speech recognition with evolving connectionist systems , 2003, Inf. Sci..

[91]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[92]  Thomas Martinetz,et al.  'Neural-gas' network for vector quantization and its application to time-series prediction , 1993, IEEE Trans. Neural Networks.

[93]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[94]  Yves Chauvin,et al.  A Back-Propagation Algorithm with Optimal Use of Hidden Units , 1988, NIPS.

[95]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[96]  Dimitar Filev,et al.  On-Line Evolution of Takagi-Sugeno Fuzzy Models , 2004, IFAC Proceedings Volumes.

[97]  Friedrich Ungerer,et al.  An introduction to cognitive linguistics , 1999 .

[98]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[99]  Andreas Ziehe,et al.  Adaptive On-line Learning in Changing Environments , 1996, NIPS.

[100]  Nikola Kasabov Evolving Connectionist-based Decision Support Systems , 2003 .

[101]  Nikola Kasabov,et al.  Artificial Immune Networks as a Paradigm for Classification and Profiling of Gene Expression Data , 2005 .

[102]  Nikola K. Kasabov,et al.  An efficient greedy K-means algorithm for global gene trajectory clustering , 2006, Expert Syst. Appl..

[103]  John G. Taylor,et al.  Neural networks for consciousness , 1997, Neural Networks.

[104]  James Gleick,et al.  Chaos, Making a New Science , 1987 .

[105]  Nikola Kasabov,et al.  Fuzzy clustering of gene expression data , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[106]  Mick F. Tuite,et al.  Post-Transcriptional Control of Gene Expression , 1990, NATO ASI Series.

[107]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[108]  H. R. Berenji,et al.  Fuzzy Logic Controllers , 1992 .

[109]  John H. Andreae,et al.  The chaotic self-organizing map , 1993, Proceedings 1993 The First New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems.

[110]  Gerald Sommer,et al.  On-line Learning with Dynamic Cell Structures , 2004 .

[111]  Nikola Kasabov,et al.  Biologically Plausible Computational Neurogenetic Models: Modeling the Interaction Between Genes, Neurons and Neural Networks , 2005 .

[112]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[113]  Jude W. Shavlik,et al.  Knowledge-Based Artificial Neural Networks , 1994, Artif. Intell..

[114]  Lipo Wang,et al.  Data Mining With Computational Intelligence , 2006, IEEE Transactions on Neural Networks.

[115]  M. Arbib Brains, Machines, and Mathematics , 1987, Springer US.

[116]  Susan P. Worner,et al.  Ecoclimatic assessment of potential establishment of exotic pests. , 1988 .

[117]  A M Liberman,et al.  Perception of the speech code. , 1967, Psychological review.

[118]  George J. Klir,et al.  Conceptual Foundations Of Quantum Mechanics: The Role Of Evidence Theory, Quantum Sets, And Modal Logic , 1999 .

[119]  Philippe Gaussier,et al.  A topological neural map for on-line learning: emergence of obstacle avoidance in a mobile robot , 1994 .

[120]  Catherine L. Harris,et al.  Connectionism and Cognitive Linguistics , 1990 .

[121]  Shaoning Pang,et al.  One-Pass Incremental Membership Authentication by Face Classification , 2004, ICBA.

[122]  Tin Wee Tan,et al.  Information Processing and Living Systems , 2005 .

[123]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[124]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[125]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[126]  Sushmita Mitra,et al.  Neuro-fuzzy rule generation: survey in soft computing framework , 2000, IEEE Trans. Neural Networks Learn. Syst..

[127]  Ajit Narayanan,et al.  Quantum artificial neural network architectures and components , 2000, Inf. Sci..

[128]  Enrico Blanzieri,et al.  Learning Radial Basis Function Networks On-line , 1996, International Conference on Machine Learning.

[129]  Mark S. Nixon,et al.  Generating-shrinking algorithm for learning arbitrary classification , 1994, Neural Networks.

[130]  Wlodzislaw Duch,et al.  Extraction of Logical Rules from Neural Networks , 1998, Neural Processing Letters.

[131]  R. Miesfeld,et al.  Applied Molecular Genetics , 1999 .

[132]  Stephen M. Mount,et al.  A catalogue of splice junction sequences. , 1982, Nucleic acids research.

[133]  B McNulty,et al.  To compute...or not to compute? , 1988, Ontario dentist.

[134]  Shaoning Pang,et al.  Two-Class SVM Trees (2-SVMT) for Biomarker Data Analysis , 2006, ISNN.

[135]  Nikola Kasabov,et al.  Computational Neurogenetic Modeling , 2007 .

[136]  C. A. Murthy,et al.  A modified metric to compute distance , 1992, Pattern Recognit..

[137]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[138]  James R. Koehler,et al.  Statistics in Engineering: A Practical Approach , 1996 .

[139]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[140]  Marek A. Perkowski,et al.  Multiple-Valued Quantum Circuits and Research Challenges for Logic Design and Computational Intelligence Communities , 2022 .

[141]  Nikola K. Kasabov,et al.  Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[142]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[143]  Andy Clark,et al.  Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing , 1989 .

[144]  Vera Kurková,et al.  Kolmogorov's theorem and multilayer neural networks , 1992, Neural Networks.

[145]  Dimitar Filev,et al.  Generation of Fuzzy Rules by Mountain Clustering , 1994, J. Intell. Fuzzy Syst..

[146]  R.J. Machado,et al.  Evolutive fuzzy neural networks , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[147]  Paul M. Frank,et al.  Identification of fuzzy relational models for fault detection , 1999 .

[148]  S. J. Sinclair,et al.  The development of the Otago speech database , 1995, Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems.

[149]  Christopher L. Scofield,et al.  Neural networks and speech processing , 1991, The Kluwer international series in engineering and computer science.

[150]  Nikola Kasabov,et al.  Discovering gene regulatory networks from gene expression data with the use of evolving connectionist systems , 2004 .

[151]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[152]  J. M. Williams,et al.  Correlations between immediate early gene induction and the persistence of long-term potentiation , 1993, Neuroscience.

[153]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[154]  J. Collado-Vides Integrative Approaches to Molecular Biology , 1996 .

[155]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[156]  Yoshiki Uchikawa,et al.  An efficient finding of fuzzy rules using a new approach to genetic based machine learning , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[157]  S. Pinker The language instinct : how the mind creates language , 1995 .

[158]  C. Koch,et al.  Quantum mechanics in the brain , 2006, Nature.

[159]  G. RESCONP,et al.  A DATA MODEL FOR THE MORPHOGENETIC NEURON , 2000 .

[160]  C. Smith,et al.  Adaptive Coding of Monochrome and Color Images , 1977, IEEE Trans. Commun..

[161]  Joseph Picone,et al.  Signal modeling techniques in speech recognition , 1993, Proc. IEEE.

[162]  Nikola Kasabov,et al.  Modelling the Emergence of Speech and Language Through Evolving Connectionist Systems , 2000 .

[163]  Nikola K. Kasabov,et al.  A Hybrid Genetic Algorithm and Expectation Maximization Method for Global Gene Trajectory Clustering , 2005, J. Bioinform. Comput. Biol..

[164]  Ralph R. Martin,et al.  Incremental Eigenanalysis for Classification , 1998, BMVC.

[165]  Nikola Kasabov,et al.  Evolving computational intelligence systems , 2005 .

[166]  S. Grossberg,et al.  The Hippocampus and Cerebellum in Adaptively Timed Learning, Recognition, and Movement , 1996, Journal of Cognitive Neuroscience.

[167]  Teresa Bernarda Ludermir,et al.  EFuNNs Ensembles Construction Using a Clustering Method and a Coevolutionary Genetic Algorithm , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[168]  Masumi Ishikawa,et al.  Structural learning with forgetting , 1996, Neural Networks.

[169]  Gerald Sommer,et al.  Dynamic Cell Structure Learns Perfectly Topology Preserving Map , 1995, Neural Computation.

[170]  Andrew W. Moore,et al.  Acquisition of Dynamic Control Knowledge for a Robotic Manipulator , 1990, ML.

[171]  Xin Yao,et al.  Evolutionary Artificial Neural Networks , 1993, Int. J. Neural Syst..

[172]  L. Wolpert Artwork CD-ROM for Principles of development , 1998 .

[173]  Xiaowei Zhou,et al.  Real-time joint Landmark Recognition and Classifier Generation by an Evolving Fuzzy System , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[174]  Michael J. Watts,et al.  Nominal-scale Evolving Connectionist Systems , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[175]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[176]  Michael Arbib,et al.  From Vision to Action via Distributed Computation , 1997 .

[177]  Siming Liu,et al.  Dynamic topology representing networks , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[178]  Kishan G. Mehrotra,et al.  Efficient classification for multiclass problems using modular neural networks , 1995, IEEE Trans. Neural Networks.

[179]  David E. Rumelhart,et al.  Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..

[180]  László T. Kóczy,et al.  Fuzzy systems and approximation , 1997, Fuzzy Sets Syst..

[181]  Nikola Kasabov,et al.  Efficient global clustering using the Greedy Elimination Method , 2004 .

[182]  Les E. Atlas,et al.  The challenge of spoken language systems: research directions for the nineties , 1995, IEEE Trans. Speech Audio Process..

[183]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[184]  James V. Candy,et al.  Adaptive and Learning Systems for Signal Processing, Communications, and Control , 2006 .

[185]  Jacques Gautrais,et al.  SpikeNET: A simulator for modeling large networks of integrate and fire neurons , 1999, Neurocomputing.

[186]  Nikola Kasabov,et al.  A two-stage methodology for gene regulatory network extraction from time-course gene expression data , 2004 .

[187]  Koichiro Yamauchi,et al.  Sleep Learning - An Incremental Learning System Inspired by Sleep Behavior- , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[188]  Shaoning Pang,et al.  Image and Fractal Information Processing for Large-Scale Chemoinformatics, Genomics Analyses and Pattern Discovery , 2006, PRIB.

[189]  Daming Shi,et al.  ESOFCMAC: Evolving Self-Organizing Fuzzy Cerebellar Model Articulation Controller , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[190]  I. Dimopoulos,et al.  Application of neural networks to modelling nonlinear relationships in ecology , 1996 .

[191]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[192]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[193]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[194]  Boris Bacic Towards a neuro fuzzy tennis coach: automated extraction of the region of interest (ROI) , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[195]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[196]  Yukio Kosugi,et al.  An oscillation-driven neural network for the simulation of an olfactory system , 2003, Neural Computing & Applications.

[197]  Shigeru Tanaka,et al.  Topology of Visual Cortical Maps , 1997 .

[198]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[199]  S. Segalowitz Language functions and brain organization , 1983 .

[200]  J. McCauley Chaos, dynamics, and fractals : an algorithmic approach to deterministic chaos , 1993 .

[201]  Nikola K. Kasabov,et al.  Fast neural network ensemble learning via negative-correlation data correction , 2005, IEEE Transactions on Neural Networks.

[202]  Madan M. Gupta,et al.  On the principles of fuzzy neural networks , 1994 .

[203]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[204]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[205]  Michio Sugeno,et al.  An introductory survey of fuzzy control , 1985, Inf. Sci..

[206]  Irena Koprinska,et al.  Video segmentation of MPEG compressed data , 1998, 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No.98EX196).

[207]  Nikola Kasabov,et al.  Evolving Connectionist Systems: Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines , 2002, IEEE Transactions on Neural Networks.

[208]  Nikola K. Kasabov,et al.  Adaptation and interaction in dynamical systems: Modelling and rule discovery through evolving connectionist systems , 2006, Appl. Soft Comput..

[209]  Michael C. Mozer,et al.  Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assessment , 1988, NIPS.

[210]  Wilfrid S. Kendall,et al.  Networks and Chaos - Statistical and Probabilistic Aspects , 1993 .

[211]  Jude Shavlik,et al.  Refinement ofApproximate Domain Theories by Knowledge-Based Neural Networks , 1990, AAAI.

[212]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[213]  P. Jusczyk The discovery of spoken language , 1997 .

[214]  Nikola Kasabov,et al.  Foundations Of Neural Networks, Fuzzy Systems, And Knowledge Engineering [Books in Brief] , 1996, IEEE Transactions on Neural Networks.

[215]  Arnaud Delorme,et al.  Networks of integrate-and-fire neurons using Rank Order Coding B: Spike timing dependent plasticity and emergence of orientation selectivity , 2001, Neurocomputing.

[216]  H. M. Wain Introduction to Bioinformatics. Cell and Molecular Biology in Action Series. By T. K. Attwood and D. J. Parry‐Smith (Series Editor: E. Wood). Harlow, Essex: Addison Wesley Longman. 1999. Pp. 218. £17.99 (paperback). , 1999 .

[217]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[218]  N. Kasabov,et al.  Gene trajectory clustering with a hybrid genetic algorithm and expectation maximization method , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[219]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[220]  Stephen Grossberg,et al.  Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps , 1992, IEEE Trans. Neural Networks.

[221]  CHEE PENG LIM,et al.  An Incremental Adaptive Network for On-line Supervised Learning and Probability Estimation , 1997, Neural Networks.

[222]  David Zhang,et al.  An Evolving Neural Network Model for Person Verification Combining Speech and Image , 2004, ICONIP.

[223]  Vojislav Kecman Support Vector Machines , 2001 .

[224]  Edward E. Smith,et al.  Categories and concepts , 1984 .

[225]  James J. Buckley,et al.  Are regular fuzzy neural nets universal approximators? , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[226]  S. Manel,et al.  Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird , 1999 .

[227]  Michael J. Watts,et al.  FuNN/2 - A Fuzzy Neural Network Architecture for Adaptive Learning and Knowledge Acquisition , 1997, Inf. Sci..

[228]  A. Ralescu,et al.  Recognition of and reasoning about facial expressions using fuzzy logic , 1993, Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication.

[229]  E. de Boer,et al.  On cochlear encoding: potentialities and limitations of the reverse-correlation technique. , 1978, The Journal of the Acoustical Society of America.

[230]  James C. Bezdek,et al.  Analysis of fuzzy information , 1987 .

[231]  Nikola Kasabov,et al.  Computational Intelligence, Bioinformatics and Computational Biology: A Brief Overview of Methods, Problems and Perspectives , 2005 .

[232]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[233]  D.P. Filev,et al.  An approach to online identification of Takagi-Sugeno fuzzy models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[234]  P J Webros BACKPROPAGATION THROUGH TIME: WHAT IT DOES AND HOW TO DO IT , 1990 .

[235]  Nikola Kasabov,et al.  Knowledge-based neural networks for gene expression data analysis, modelling and profile discovery , 2004 .

[236]  Jude Shavlik,et al.  An Approach to Combining Explanation-based and Neural Learning Algorithms , 1989 .

[237]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[238]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[239]  Nikola K. Kasabov,et al.  Modeling the emergence of bilingual acoustic clusters: a preliminary case study , 2003, Inf. Sci..

[240]  Nikola K. Kasabov,et al.  Transductive Knowledge Based Fuzzy Inference System for Personalized Modeling , 2005, FSKD.

[241]  Geoffrey E. Hinton,et al.  A Distributed Connectionist Production System , 1988, Cogn. Sci..

[242]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[243]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[244]  Nikola Kasabov,et al.  A Methodology and a System for Adaptive Speech Recognition in a Noisy Environment Based on Adaptive Noise Cancellation and Evolv- ing Fuzzy Neural Networks , 2000 .

[245]  Hiroshi Okamoto,et al.  Temporal Event Association and Output-Dependent Learning: A Proposed Scheme of Neural Molecular Connections , 1999, J. Adv. Comput. Intell. Intell. Informatics.

[246]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[247]  G. Altmann Cognitive models of speech processing , 1991 .

[248]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[249]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[250]  Jude W. Shavlik,et al.  Extracting Refined Rules from Knowledge-Based Neural Networks , 1993, Machine Learning.

[251]  T. Martin McGinnity,et al.  A Supervised STDP Based Training Algorithm with Dynamic Threshold Neurons , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[252]  Daniel J. Amit,et al.  Modeling brain function: the world of attractor neural networks, 1st Edition , 1989 .

[253]  D. Contreras,et al.  Spatiotemporal Analysis of Local Field Potentials and Unit Discharges in Cat Cerebral Cortex during Natural Wake and Sleep States , 1999, The Journal of Neuroscience.

[254]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[255]  S. Renals,et al.  Phoneme classification experiments using radial basis functions , 1989, International 1989 Joint Conference on Neural Networks.

[256]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[257]  Fu,et al.  Integration of neural heuristics into knowledge-based inference , 1989 .

[258]  Alex Waibel,et al.  Multimodal interfaces for multimedia information agents , 1997 .

[259]  Juergen Luettin,et al.  Active Shape Models for Visual Speech Feature Extraction , 1996 .

[260]  R. W. Sutherst,et al.  Predicting the survival of immigrant insect pests in new environments. , 1991 .

[261]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[262]  Nikola Kasabov,et al.  Rules of chaotic behaviour extracted from a fuzzy-neural network , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[263]  Nikola K. Kasabov,et al.  Ensembles of EFuNNs: an architecture for a multimodule classifier , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[264]  F C Hoppensteadt,et al.  Intermittent chaos, self-organization, and learning from synchronous synaptic activity in model neuron networks. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[265]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[266]  Gürsel Serpen,et al.  The Simultaneous Recurrent Neural Network for Addressing the Scaling Problem in Static Optimization , 2001, Int. J. Neural Syst..

[267]  T Poggio,et al.  Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.

[268]  T. Gelder,et al.  Mind as Motion: Explorations in the Dynamics of Cognition , 1995 .

[269]  Nikola K. Kasabov,et al.  NFI: a neuro-fuzzy inference method for transductive reasoning , 2005, IEEE Transactions on Fuzzy Systems.

[270]  Jong-Hwan Kim,et al.  Quantum-Inspired Evolutionary Algorithm-Based Face Verification , 2003, GECCO.

[271]  Piero P. Bonissone,et al.  Automated fuzzy knowledge base generation and tuning , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[272]  Xin Yao,et al.  Evolutionary ensembles with negative correlation learning , 2000, IEEE Trans. Evol. Comput..

[273]  Nikola Kasabov,et al.  Evolving ontologies for intelligent decision support , 2006, Fuzzy Logic and the Semantic Web.

[274]  N. Kasabov,et al.  Transductive modeling with GA parameter optimization , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[275]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[276]  Xin Yao,et al.  Evolving Neural Network Ensembles by Minimization of Mutual Information , 2004, Int. J. Hybrid Intell. Syst..

[277]  David G. Stork,et al.  Speechreading by Humans and Machines , 1996 .

[278]  Nikola K. Kasabov,et al.  TWRBF - Transductive RBF Neural Network with Weighted Data Normalization , 2004, ICONIP.

[279]  Shaoning Pang,et al.  Transductive support vector machines and applications in bioinformatics for promoter recognition , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.

[280]  Roberto Brunelli,et al.  Person identification using multiple cues , 1995, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[281]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[282]  T. Deacon Human Brain Evolution: I. Evolution of Language Circuits , 1988 .

[283]  Waleed H. Abdulla,et al.  Reduced feature-set based parallel CHMM speech recognition systems , 2003, Inf. Sci..

[284]  M. H. Royer,et al.  Application of high-resolution weather data to pest risk assessment1 , 1991 .

[285]  Nikola K. Kasabov,et al.  Brain-, Gene-, and Quantum Inspired Computational Intelligence: Challenges and Opportunities , 2007, Challenges for Computational Intelligence.

[286]  Irena Koprinska,et al.  Evolving fuzzy neural network for camera operations recognition , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[287]  M. Tomita Whole-cell simulation: a grand challenge of the 21st century. , 2001, Trends in biotechnology.

[288]  Eric O. Postma,et al.  Discovering the Visual Signature of Painters , 2000 .

[289]  Shigeo Abe,et al.  Incremental learning of feature space and classifier for face recognition , 2005, Neural Networks.

[290]  G. Koch,et al.  Influence of range of renal function and liver disease on predictability of creatinine clearance , 1981, Clinical pharmacology and therapeutics.

[291]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[292]  Frank C. Hoppensteadt,et al.  An introduction to the mathematics of neurons , 1986 .

[293]  Van Hulle MM Kernel-Based Equiprobabilistic Topographic Map Formation. , 1998, Neural computation.

[294]  Nikola K. Kasabov,et al.  Evolutionary Computation For On-Line And Off-Line Parameter Tuning Of Evolving Fuzzy Neural Networksc , 2004, Int. J. Comput. Intell. Appl..

[295]  Trevor P Martin Fuzzy Logic and the Semantic Web , 2005, Capturing Intelligence.

[296]  S. B. Kater,et al.  Calcium regulation of the neuronal growth cone , 1988, Trends in Neurosciences.

[297]  Cockcroft Dw,et al.  Prediction of Creatinine Clearance from Serum Creatinine , 1976 .

[298]  Gerald Sommer,et al.  An integrated architecture for learning of reactive behaviors based on dynamic cell structures , 1997, Robotics Auton. Syst..

[299]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[300]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[301]  Shaoning Pang,et al.  Inductive vs transductive inference, global vs local models: SVM, TSVM, and SVMT for gene expression classification problems , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[302]  J. Jarrett,et al.  Introduction to the Practice of Statistics , 2004 .

[303]  N. Kasabov,et al.  Evolving Connectionist Systems Based Role Allocation of Robots for Soccer Playing , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[304]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[305]  Arnaud Delorme,et al.  Face identification using one spike per neuron: resistance to image degradations , 2001, Neural Networks.

[306]  Nikola K. Kasabov,et al.  A Preliminary Study on Negative Correlation Learning via Correlation-Corrected Data (NCCD) , 2005, Neural Processing Letters.

[307]  S. Grossberg On learning and energy-entropy dependence in recurrent and nonrecurrent signed networks , 1969 .

[308]  Hitoshi Iba,et al.  Adaptive Learning of Polynomial Networks: Genetic Programming, Backpropagation and Bayesian Methods (Genetic and Evolutionary Computation) , 2006 .

[309]  B. Moore,et al.  Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. , 1983, The Journal of the Acoustical Society of America.

[310]  Marcel J. T. Reinders,et al.  A Comparison of Genetic Network Models , 2000, Pacific Symposium on Biocomputing.