Scenario generation for stochastic optimization problems via the sparse grid method
暂无分享,去创建一个
[1] A. Genz,et al. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight , 1996 .
[2] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[3] R. Rockafellar,et al. Optimization of conditional value-at risk , 2000 .
[4] Suvrajeet Sen,et al. The Scenario Generation Algorithm for Multistage Stochastic Linear Programming , 2005, Math. Oper. Res..
[5] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[6] William T. Ziemba,et al. Applications of Stochastic Programming , 2005 .
[7] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[8] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[9] J. Dupacová,et al. Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .
[10] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[11] Ilya M. Sobol,et al. A Primer for the Monte Carlo Method , 1994 .
[12] Michal Kaut,et al. Evaluation of scenario-generation methods for stochastic programming , 2007 .
[13] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[14] Giovanni Monegato,et al. Stieltjes Polynomials and Related Quadrature Rules , 1982 .
[15] Werner Römisch,et al. Scenario tree modeling for multistage stochastic programs , 2009, Math. Program..
[16] Pierre L'Ecuyer,et al. Algorithm 958 , 2016, ACM Trans. Math. Softw..
[17] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[18] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[19] I. P. Mysovskih. Approximate Calculation of Integrals , 1969 .
[20] Henryk Wozniakowski,et al. The curse of dimensionality for numerical integration of smooth functions , 2012, Math. Comput..
[21] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[22] R. Wets,et al. Epi‐consistency of convex stochastic programs , 1991 .
[23] Harald Niederreiter,et al. Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .
[24] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[25] F. Pillichshammer,et al. Digital Nets and Sequences: Nets and sequences , 2010 .
[26] Dimitri P. Bertsekas,et al. A Quasi Monte Carlo Method for Large-Scale Inverse Problems , 2012 .
[27] Thomas N. L. Patterson,et al. An algorithm for generating interpolatory quadrature rules of the highest degree of precision with preassigned nodes for general weight functions , 1989, TOMS.
[28] Michael A. H. Dempster,et al. Evpi-Based Importance Sampling Solution Procedures for Multistage Stochastic Linear Programmes on Parallel Mimd Architectures , 1997 .
[29] Sanjay Mehrotra,et al. Generating nested quadrature formulas for general weight functions with known moments , 2012, ArXiv.
[30] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[31] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[32] Sanjay Mehrotra,et al. Epi-convergent scenario generation method for stochastic problems via sparse grid , 2008 .
[33] Teemu Pennanen,et al. Integration quadratures in discretization of stochastic programs , 2002 .
[34] Georg Ch. Pflug,et al. A branch and bound method for stochastic global optimization , 1998, Math. Program..
[35] John R. Birge,et al. The Abridged Nested Decomposition Method for Multistage Stochastic Linear Programs with Relatively Complete Recourse , 2006, Algorithmic Oper. Res..
[36] P. L’Ecuyer,et al. Algorithm 958: Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice Rules , 2015, ACM Trans. Math. Softw..
[37] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[38] W. Rudin. Real and complex analysis, 3rd ed. , 1987 .
[39] Jitka Dupacová,et al. Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..
[40] Jitka Dupacová,et al. Scenario reduction in stochastic programming , 2003, Math. Program..
[41] Florian Heiss,et al. Likelihood approximation by numerical integration on sparse grids , 2008 .
[42] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[43] Sanjay Mehrotra,et al. Generating Moment Matching Scenarios Using Optimization Techniques , 2013, SIAM J. Optim..
[44] Teemu Pennanen,et al. Epi-convergent discretizations of stochastic programs via integration quadratures , 2005, Numerische Mathematik.
[45] Georg Ch. Pflug,et al. Scenario tree generation for multiperiod financial optimization by optimal discretization , 2001, Math. Program..
[46] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[47] Teemu Pennanen,et al. Epi-Convergent Discretizations of Multistage Stochastic Programs , 2005, Math. Oper. Res..
[48] P. L’Ecuyer,et al. On Figures of Merit for Randomly-Shifted Lattice Rules , 2012 .
[49] R. Cooke. Real and Complex Analysis , 2011 .