Scenario generation for stochastic optimization problems via the sparse grid method

We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid method can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. It is indicated that the method scales well with the dimension of the distribution—especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.

[1]  A. Genz,et al.  Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight , 1996 .

[2]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[3]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[4]  Suvrajeet Sen,et al.  The Scenario Generation Algorithm for Multistage Stochastic Linear Programming , 2005, Math. Oper. Res..

[5]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[6]  William T. Ziemba,et al.  Applications of Stochastic Programming , 2005 .

[7]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[8]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[9]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[10]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[11]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[12]  Michal Kaut,et al.  Evaluation of scenario-generation methods for stochastic programming , 2007 .

[13]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[14]  Giovanni Monegato,et al.  Stieltjes Polynomials and Related Quadrature Rules , 1982 .

[15]  Werner Römisch,et al.  Scenario tree modeling for multistage stochastic programs , 2009, Math. Program..

[16]  Pierre L'Ecuyer,et al.  Algorithm 958 , 2016, ACM Trans. Math. Softw..

[17]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[18]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[19]  I. P. Mysovskih Approximate Calculation of Integrals , 1969 .

[20]  Henryk Wozniakowski,et al.  The curse of dimensionality for numerical integration of smooth functions , 2012, Math. Comput..

[21]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[22]  R. Wets,et al.  Epi‐consistency of convex stochastic programs , 1991 .

[23]  Harald Niederreiter,et al.  Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .

[24]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[25]  F. Pillichshammer,et al.  Digital Nets and Sequences: Nets and sequences , 2010 .

[26]  Dimitri P. Bertsekas,et al.  A Quasi Monte Carlo Method for Large-Scale Inverse Problems , 2012 .

[27]  Thomas N. L. Patterson,et al.  An algorithm for generating interpolatory quadrature rules of the highest degree of precision with preassigned nodes for general weight functions , 1989, TOMS.

[28]  Michael A. H. Dempster,et al.  Evpi-Based Importance Sampling Solution Procedures for Multistage Stochastic Linear Programmes on Parallel Mimd Architectures , 1997 .

[29]  Sanjay Mehrotra,et al.  Generating nested quadrature formulas for general weight functions with known moments , 2012, ArXiv.

[30]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[31]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[32]  Sanjay Mehrotra,et al.  Epi-convergent scenario generation method for stochastic problems via sparse grid , 2008 .

[33]  Teemu Pennanen,et al.  Integration quadratures in discretization of stochastic programs , 2002 .

[34]  Georg Ch. Pflug,et al.  A branch and bound method for stochastic global optimization , 1998, Math. Program..

[35]  John R. Birge,et al.  The Abridged Nested Decomposition Method for Multistage Stochastic Linear Programs with Relatively Complete Recourse , 2006, Algorithmic Oper. Res..

[36]  P. L’Ecuyer,et al.  Algorithm 958: Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice Rules , 2015, ACM Trans. Math. Softw..

[37]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[38]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[39]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[40]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[41]  Florian Heiss,et al.  Likelihood approximation by numerical integration on sparse grids , 2008 .

[42]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[43]  Sanjay Mehrotra,et al.  Generating Moment Matching Scenarios Using Optimization Techniques , 2013, SIAM J. Optim..

[44]  Teemu Pennanen,et al.  Epi-convergent discretizations of stochastic programs via integration quadratures , 2005, Numerische Mathematik.

[45]  Georg Ch. Pflug,et al.  Scenario tree generation for multiperiod financial optimization by optimal discretization , 2001, Math. Program..

[46]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[47]  Teemu Pennanen,et al.  Epi-Convergent Discretizations of Multistage Stochastic Programs , 2005, Math. Oper. Res..

[48]  P. L’Ecuyer,et al.  On Figures of Merit for Randomly-Shifted Lattice Rules , 2012 .

[49]  R. Cooke Real and Complex Analysis , 2011 .