Estimation and Inference of Quantile Regression for Survival Data Under Biased Sampling

ABSTRACT Biased sampling occurs frequently in economics, epidemiology, and medical studies either by design or due to data collecting mechanism. Failing to take into account the sampling bias usually leads to incorrect inference. We propose a unified estimation procedure and a computationally fast resampling method to make statistical inference for quantile regression with survival data under general biased sampling schemes, including but not limited to the length-biased sampling, the case-cohort design, and variants thereof. We establish the uniform consistency and weak convergence of the proposed estimator as a process of the quantile level. We also investigate more efficient estimation using the generalized method of moments and derive the asymptotic normality. We further propose a new resampling method for inference, which differs from alternative procedures in that it does not require to repeatedly solve estimating equations. It is proved that the resampling method consistently estimates the asymptotic covariance matrix. The unified framework proposed in this article provides researchers and practitioners a convenient tool for analyzing data collected from various designs. Simulation studies and applications to real datasets are presented for illustration. Supplementary materials for this article are available online.

[1]  Tony Lancaster,et al.  The Econometric Analysis of Transition Data. , 1992 .

[2]  Jiayang Sun,et al.  SEMI-PARAMETRIC ESTIMATES UNDER BIASED SAMPLING , 1997 .

[3]  Simon J. Sheather,et al.  Rank Based Inference , 2014 .

[4]  Sam Efromovich Density estimation for biased data , 2004 .

[5]  Guang Cheng,et al.  A Note on Bootstrap Moment Consistency for Semiparametric M-Estimation , 2011 .

[6]  Zhiliang Ying,et al.  A Unified Approach to Semiparametric Transformation Models Under General Biased Sampling Schemes , 2013, Journal of the American Statistical Association.

[7]  Kani Chen,et al.  Generalized case–cohort sampling , 2001 .

[8]  Wenbin Lu,et al.  Semiparametric transformation models for the case-cohort study , 2006 .

[9]  J. Uña-Álvarez Nonparametric estimation under length-biased sampling and Type I censoring: A moment based approach , 2004 .

[10]  Norman E. Breslow,et al.  Statistical Methods in Cancer Research, Vol. II: The Design and Analysis of Cohort Studies. , 1990 .

[11]  Kani Chen,et al.  Case-cohort and case-control analysis with Cox's model , 1999 .

[12]  H. Robbins,et al.  Estimating a treatment effect under biased sampling. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Kato Kengo A note on moment convergence of bootstrap M-estimators , 2011 .

[14]  Bryan Langholz,et al.  Exposure Stratified Case-Cohort Designs , 2000, Lifetime data analysis.

[15]  Sundarraman Subramanian,et al.  Median regression and the missing information principle , 2001 .

[16]  Ming Zheng,et al.  Quantile regression analysis of case-cohort data , 2013, J. Multivar. Anal..

[17]  R. L. Prentice,et al.  A case-cohort design for epidemiologic cohort studies and disease prevention trials , 1986 .

[18]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[19]  Lan Wang,et al.  Quantile regression analysis of length‐biased survival data , 2014 .

[20]  Stephen Portnoy,et al.  The jackknife's edge: Inference for censored regression quantiles , 2014, Comput. Stat. Data Anal..

[21]  Ian Barrodale,et al.  Algorithm 478: Solution of an Overdetermined System of Equations in the l1 Norm [F4] , 1974, Commun. ACM.

[22]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[23]  Jing Ning,et al.  Buckley–James‐Type Estimator with Right‐Censored and Length‐Biased Data , 2011, Biometrics.

[24]  Xiaodong Luo,et al.  Nonparametric estimation for right-censored length-biased data: a pseudo-partial likelihood approach , 2009 .

[25]  Zhiliang Ying,et al.  Survival analysis with median regression models , 1995 .

[26]  David B Wolfson,et al.  Length-Biased Sampling With Right Censoring , 2002 .

[27]  R. Koenker Quantile Regression: Name Index , 2005 .

[28]  N. Breslow,et al.  Statistical methods in cancer research. Volume II--The design and analysis of cohort studies. , 1987, IARC scientific publications.

[29]  Yehuda Vardi,et al.  Multiplicative censoring, renewal processes, deconvolution and decreasing density: Nonparametric estimation , 1989 .

[30]  Anders Skrondal,et al.  Stratified Case‐Cohort Analysis of General Cohort Sampling Designs , 2007 .

[31]  A. Tsiatis Estimating Regression Parameters Using Linear Rank Tests for Censored Data , 1990 .

[32]  Ying Qing Chen,et al.  Semiparametric Regression in Size‐Biased Sampling , 2010, Biometrics.

[33]  Zhiliang Ying,et al.  A Large Sample Study of Rank Estimation for Censored Regression Data , 1993 .

[34]  Steven G. Self,et al.  Asymptotic Distribution Theory and Efficiency Results for Case-Cohort Studies , 1988 .

[35]  N. Kiefer Economic Duration Data and Hazard Functions , 1988 .

[36]  Peter B. Gilbert Large sample theory of maximum likelihood estimates in semiparametric biased sampling models , 2000 .

[37]  Yu Shen,et al.  Statistical Methods for Analyzing Right‐Censored Length‐Biased Data under Cox Model , 2010, Biometrics.

[38]  Donglin Zeng,et al.  Efficient resampling methods for nonsmooth estimating functions. , 2008, Biostatistics.

[39]  B. Langholz Case–Cohort Studies , 2005 .

[40]  Naomi S. Altman,et al.  Quantile regression , 2019, Nature Methods.

[41]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .

[42]  Michal Kulich,et al.  Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies , 2004 .

[43]  Mei-Cheng Wang,et al.  Nonparametric Estimation from Cross-Sectional Survival Data , 1991 .

[44]  Kani Chen,et al.  Efficient estimation of the censored linear regression model , 2013 .

[45]  Z. Ying,et al.  Rank-based inference for the accelerated failure time model , 2003 .

[46]  David C. Schmittlein,et al.  Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models , 1993 .

[47]  J. L. Kelsey Cohort studies. , 1983, The Journal of rheumatology. Supplement.

[48]  Mostafa Karimi,et al.  Rank-based inference for the accelerated failure time model in the presence of interval censored data , 2017 .

[49]  T. Lai,et al.  Stochastic integrals of empirical-type processes with applications to censored regression , 1988 .

[50]  Yijian Huang,et al.  QUANTILE CALCULUS AND CENSORED REGRESSION. , 2010, Annals of statistics.

[51]  Lan Wang,et al.  Locally Weighted Censored Quantile Regression , 2009 .

[52]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[53]  Chiung-Yu Huang,et al.  Composite Partial Likelihood Estimation Under Length-Biased Sampling, With Application to a Prevalent Cohort Study of Dementia , 2012, Journal of the American Statistical Association.

[54]  J. A. McFadden,et al.  On the Lengths of Intervals in a Stationary Point Process , 1962 .

[55]  Yong Zhou,et al.  Quantile regression for right-censored and length-biased data , 2012 .

[56]  Hassen A. Muttlak,et al.  Ranked set sampling with size-biased probability of selection , 1990 .

[57]  Jing Ning,et al.  Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models , 2009, Journal of the American Statistical Association.

[58]  M. Berwick,et al.  Quantifying the Change of Melanoma Incidence by Breslow Thickness , 2002, Biometrics.

[59]  Z. Ying,et al.  Cox Regression with Incomplete Covariate Measurements , 1993 .

[60]  Jianwen Cai,et al.  Case–Cohort Analysis with Accelerated Failure Time Model , 2009, Biometrics.

[61]  Limin Peng,et al.  Survival Analysis With Quantile Regression Models , 2008 .