The Gaia-ESO Survey: Dynamical Analysis of the L1688 region in Ophiuchus

The Gaia ESO Public Spectroscopic Survey (GES) is providing the astronomical community with high-precision measurements of many stellar parameters including radial velocities (RVs) of stars belonging to several young clusters and star-forming regions. One of the main goals of the young cluster observations is to study of their dynamical evolution and provide insight into their future, revealing if they will eventually disperse to populate the field, rather than evolve into bound open clusters. In this paper we report the analysis of the dynamical state of L1688 in the $\rho$~Ophiuchi molecular cloud using the dataset provided by the GES consortium. We performed the membership selection of the more than 300 objects observed. Using the presence of the lithium absorption and the location in the Hertzspung-Russell diagram, we identify 45 already known members and two new association members. We provide accurate RVs for all 47 confirmed members.A dynamical analysis, after accounting for unresolved binaries and errors, shows that the stellar surface population of L1688 has a velocity dispersion $\sigma \sim$1.14$\pm$0.35 km s$^{-1}$ that is consistent with being in virial equilibrium and is bound with a $\sim$80% probability. We also find a velocity gradient in the stellar surface population of $\sim$1.0 km s$^{-1}$pc$^{-1}$ in the northwest/southeast direction, which is consistent with that found for the pre-stellar dense cores, and we discuss the possibility of sequential and triggered star formation in L1688.

[1]  F. Vrba,et al.  RELATIVE PROPER MOTIONS IN THE RHO OPHIUCHI CLUSTER , 2015 .

[2]  E. Feigelson,et al.  THE SPATIAL STRUCTURE OF YOUNG STELLAR CLUSTERS. III. PHYSICAL PROPERTIES AND EVOLUTIONARY STATES , 2015, 1507.05653.

[3]  S. Chojnowski,et al.  IN-SYNC. III. THE DYNAMICAL STATE OF IC 348—A SUPER-VIRIAL VELOCITY DISPERSION AND A PUZZLING SIGN OF CONVERGENCE , 2015, 1505.07504.

[4]  C. Babusiaux,et al.  TheGaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities , 2015, Astronomy & Astrophysics.

[5]  L. Hillenbrand,et al.  EMPIRICAL ISOCHRONES FOR LOW MASS STARS IN NEARBY YOUNG ASSOCIATIONS , 2015, 1505.06518.

[6]  B. Ercolano,et al.  Early evolution of embedded clusters , 2015, 1504.05896.

[7]  E. Rosolowsky,et al.  The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population , 2015, 1502.05858.

[8]  C. Babusiaux,et al.  Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra , 2015, 1501.04450.

[9]  M. Mateo,et al.  KINEMATIC AND SPATIAL SUBSTRUCTURE IN NGC 2264 , 2015, 1501.03172.

[10]  G. Micela,et al.  The Gaia-ESO Survey: Chromospheric emission, accretion properties, and rotation in γ Velorum and Chamaeleon I , 2014, 1412.4153.

[11]  Jonathan C. Tan,et al.  IN-SYNC. II. VIRIAL STARS FROM SUBVIRIAL CORES—THE VELOCITY DISPERSION OF EMBEDDED PRE-MAIN-SEQUENCE STARS IN NGC 1333 , 2014, 1411.6013.

[12]  Michael Habeck,et al.  Bayesian evidence and model selection , 2014, Digit. Signal Process..

[13]  P. Hopkins,et al.  Mapping the core mass function to the initial mass function , 2014, 1411.2979.

[14]  V. Adibekyan,et al.  The Gaia-ESO survey: metallicity of the chamaeleon i star-forming region , 2014, 1406.2548.

[15]  M. Meyer,et al.  Binaries in the field: fossils of the star formation process? , 2014, 1406.0844.

[16]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[17]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Kinematic structure in the Gamma Velorum cluster , 2014, 1401.4979.

[18]  J. Drake,et al.  Constraints on massive star formation : Cygnus OB2 was always an association , 2013, 1311.4537.

[19]  M. Meyer,et al.  Dynamical evolution of star-forming regions , 2013, 1311.3639.

[20]  M. Cottaar,et al.  Binary-corrected velocity dispersions from single- and multi-epoch radial velocities: massive stars in R136 as a test case , 2013, 1311.6357.

[21]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[22]  M. Meyer,et al.  On the Universality of the Companion Mass Ratio Distribution , 2013, 1304.3459.

[23]  R. Parker,et al.  The binary companion mass ratio distribution: an imprint of the star formation process? , 2013, 1304.3123.

[24]  M. Carr,et al.  Performance of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph , 2012, Other Conferences.

[25]  N. Bastian,et al.  The VLT-FLAMES Tarantula Survey. VII. A low velocity dispersion for the young massive cluster R136 , 2012, 1208.0825.

[26]  R. Parker,et al.  Characterizing the dynamical state of star clusters from snapshots of their spatial distributions , 2012, 1208.0335.

[27]  A. Whitworth,et al.  Dispersal of molecular clouds by ionizing radiation , 2012, 1206.6492.

[28]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[29]  M. Meyer,et al.  Is the massive young cluster Westerlund I bound , 2011, 1112.4328.

[30]  S. Quanz,et al.  The effects of dynamical interactions on planets in young substructured star clusters , 2011, 1109.6007.

[31]  M. Meyer,et al.  THE INITIAL MASS FUNCTION AND DISK FREQUENCY OF THE ρ OPHIUCHI CLOUD: AN EXTINCTION-LIMITED SAMPLE , 2011, 1109.0561.

[32]  I. Bonnell,et al.  Ionizing feedback from massive stars in massive clusters: fake bubbles and untriggered star formation , 2011, 1103.1532.

[33]  E. Ostriker,et al.  DENSE CORE FORMATION IN SUPERSONIC TURBULENT CONVERGING FLOWS , 2011, 1101.2650.

[34]  Leiden,et al.  The distinction between star clusters and associations , 2010, 1010.1720.

[35]  T. Henning,et al.  INTERNAL DYNAMICS AND MEMBERSHIP OF THE NGC 3603 YOUNG CLUSTER FROM MICROARCSECOND ASTROMETRY , 2010, 1006.0005.

[36]  Simon Portegies Zwart,et al.  Young Massive Star Clusters , 2010, 1002.1961.

[37]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[38]  M. Bate The dependence of star formation on initial conditions and molecular cloud structure , 2009, 0905.3562.

[39]  D. Johnstone,et al.  Current Star Formation in the Ophiuchus and Perseus Molecular Clouds: Constraints and Comparisons from Unbiased Submillimeter and Mid-Infrared Surveys. II. , 2008, 0805.0599.

[40]  A. Szentgyorgyi,et al.  Kinematic Structure of the Orion Nebula Cluster and Its Surroundings , 2007, 0711.0391.

[41]  M. Lombardi,et al.  The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure , 2007, 0709.1164.

[42]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[43]  E. Mamajek On the distance to the Ophiuchus star-forming region , 2007, 0709.0505.

[44]  D. Johnstone,et al.  Dynamics of Dense Cores in the Perseus Molecular Cloud , 2007, 0707.2769.

[45]  B. Elmegreen On the Rapid Collapse and Evolution of Molecular Clouds , 2007, 0707.2252.

[46]  P. Kroupa,et al.  A comprehensive set of simulations studying the influence of gas expulsion on star cluster evolution , 2007, 0707.1944.

[47]  Gas expulsion and the destruction of massive young clusters , 2006, astro-ph/0609477.

[48]  D. Fabricant,et al.  Kinematics of NGC 2264: Signs of Cluster Formation , 2006, 0711.0380.

[49]  P. Andre',et al.  A SCUBA survey of L1689 ¿ the dog that didn't bark , 2006, astro-ph/0603203.

[50]  M. Lombardi,et al.  The COMPLETE Survey of star-forming regions: Phase I data , 2006, astro-ph/0602542.

[51]  N. Bastian,et al.  Evidence for the Strong Effect of Gas Removal on the Internal Dynamics of Young Stellar Clusters , 2006, astro-ph/0602465.

[52]  M. Meyer,et al.  Optical Spectroscopy of the Surface Population of the ρ Ophiuchi Molecular Cloud: The First Wave of Star Formation , 2005, astro-ph/0506251.

[53]  U. Exeter,et al.  Star formation in unbound giant molecular clouds: the origin of OB associations? , 2005, astro-ph/0503141.

[54]  N. Grosso,et al.  Erratum: The X-ray emission from Young Stellar Objects in the rho Ophiuchi cloud core as seen by XMM-Newton , 2004, astro-ph/0407241.

[55]  P. Caselli,et al.  On the internal structure of starless cores - I. Physical conditions and the distribution of CO, CS, N$\mathsf{_2}$H$\mathsf{^+}$, and NH$\mathsf{_3}$ in L1498 and L1517B , 2004 .

[56]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[57]  S. T. Megeath,et al.  Spectral Irradiance Calibration in the Infrared. XIII. “Supertemplates” and On-Orbit Calibrators for the SIRTF Infrared Array Camera , 2003, astro-ph/0304349.

[58]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[59]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[60]  P. Caselli,et al.  Dense Cores in Dark Clouds. XIV. N2H+ (1-0) Maps of Dense Cloud Cores , 2002, astro-ph/0202173.

[61]  A. A. Kaas,et al.  ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster , 2001, astro-ph/0103373.

[62]  F. Adams,et al.  Modes of Multiple Star Formation , 2001, astro-ph/0102039.

[63]  B. Elmegreen,et al.  Fractal Structure in Galactic Star Fields , 2000, astro-ph/0012184.

[64]  F. Adams,et al.  Constraints on the Birth Aggregate of the Solar System , 2000, astro-ph/0011326.

[65]  J. Bruijne,et al.  On the origin of the o and b-type stars with high velocities II runaway stars and pulsars ejected from the nearby young stellar groups , 2000, astro-ph/0010057.

[66]  J. Carpenter 2MASS Observations of the Perseus, Orion A, Orion B, and Monoceros R2 Molecular Clouds , 2000, astro-ph/0009118.

[67]  Binary stars in young clusters: models versus observations of the Trapezium Cluster , 1999, astro-ph/9906460.

[68]  Sabine Frink,et al.  The History of Low-Mass Star Formation in the Upper Scorpius OB Association , 1999 .

[69]  E. Martín,et al.  Spectroscopic classification of X-ray selected stars in the ρ Ophiuchi star-forming region and vicinity , 1998 .

[70]  A. Goodman,et al.  Coherence in Dense Cores. II. The Transition to Coherence , 1998 .

[71]  N. Palanque-Delabrouille,et al.  EROS and MACHO Combined Limits on Planetary-Mass Dark Matter in the Galactic Halo , 1998 .

[72]  J. Kirkpatrick,et al.  Keck Spectra of Pleiades Brown Dwarf Candidates and a Precise Determination of the Lithium Depletion Edge in the Pleiades , 1998, astro-ph/9804005.

[73]  E. Friel,et al.  HERBIG-HARO OBJECTS IN THE \RHO OPHIUCHI CLOUD , 1997 .

[74]  A. Goodman,et al.  The Magnetic Fields in the Ophiuchus and Taurus Molecular Clouds , 1996 .

[75]  V. Smith,et al.  A Survey of Lithium in the Red Giants of the Magellanic Clouds , 1995 .

[76]  P. Andre',et al.  From T Tauri stars to protostars: Circumstellar material and young stellar objects in the rho Ophiuchi cloud , 1994 .

[77]  E. Young,et al.  Near-infrared observations of young stellar objects in the Rho Ophiuchi dark cloud , 1992 .

[78]  R. Loren The Cobwebs of Ophiuchus. I. Strands of 13CO: The Mass Distribution , 1989 .

[79]  S. M. Fall,et al.  The Structure of Young Star Clusters in the Large Magellanic Cloud , 1987 .

[80]  Joe Felsenstein,et al.  Access to theory , 1987, Nature.

[81]  C. Lada,et al.  The formation and early dynamical evolution of bound stellar systems. , 1984 .

[82]  C. Sneden,et al.  A Search for Lithium-rich Giant Stars , 1984 .

[83]  C. Lada,et al.  The discovery of new embedded sources in the centrally condensed core of the Rho Ophiuchi dark cloud - The formation of a bound cluster , 1983 .

[84]  P. Myers Dense cores in dark clouds. III. Subsonic turbulence. , 1983 .

[85]  J. Hills The effect of mass loss on the dynamical evolution of a stellar system - Analytic approximations , 1980 .

[86]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .