Nanostructure of [Li(G4)] TFSI and [Li(G4)] NO3 solvate ionic liquids at HOPG and Au(111) electrode interfaces as a function of potential.

Atomic force microscopy (AFM) force measurements have been used to study the solvate ionic liquid (IL) double layer nanostructure at highly ordered pyrolytic graphite (HOPG) and Au(111) electrode surfaces as a function of potential. Two solvate ILs are investigated, [Li(G4)] TFSI and [Li(G4)] NO3. Normal force versus apparent separation data indicates that both solvate ILs adopt a multilayered morphology at the electrode interface, similar to conventional ILs. Calculations of adsorption free energies indicate that at 0 V the ion layer in contact with the electrode surface is enriched in the more surface active cations. When a positive or negative surface bias is applied, the concentration of counterions in the innermost layer increases, and higher push-through forces are required to displace near surface layers, indicating a stronger interfacial structure. Generally, [Li(G4)] TFSI has a better defined structure than [Li(G4)] NO3 on both electrode surfaces due to stronger cohesive interactions within layers. Interfacial structure is also better defined for both solvate ILs on HOPG than Au(111) due to the greater surface roughness of Au(111). Further, at all negative potentials on both surfaces, a small final step is observed, consistent with either compression of the complex cation adsorbed structure or desolvation of the glyme from the Li(+).

[1]  Peter Beike,et al.  Intermolecular And Surface Forces , 2016 .

[2]  H. Moon,et al.  Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids , 2014 .

[3]  R. Atkin,et al.  Influence of alkyl chain length and anion species on ionic liquid structure at the graphite interface as a function of applied potential , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  R. Atkin,et al.  Effect of Cation Alkyl Chain Length and Anion Type on Protic Ionic Liquid Nanostructure , 2014 .

[5]  M. Müser,et al.  Force microscopy of layering and friction in an ionic liquid. , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  R. Atkin,et al.  Nanostructure of an ionic liquid-glycerol mixture. , 2014, Physical chemistry chemical physics : PCCP.

[7]  S. Balasubramanian,et al.  Effect of cation symmetry on the organization of ionic liquids near a charged mica surface , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  R. Atkin,et al.  Combined STM, AFM, and DFT Study of the Highly Ordered Pyrolytic Graphite/1-Octyl-3-methyl-imidazolium Bis(trifluoromethylsulfonyl)imide Interface , 2014 .

[9]  M. Watanabe,et al.  Criteria for solvate ionic liquids. , 2014, Physical chemistry chemical physics : PCCP.

[10]  A. Kornyshev,et al.  Ionic liquids at electrified interfaces. , 2014, Chemical reviews.

[11]  Stephan Irle,et al.  Stochastic structure determination for conformationally flexible heterogenous molecular clusters: Application to ionic liquids , 2013, J. Comput. Chem..

[12]  Sergei V. Kalinin,et al.  Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite. , 2013, Nano letters.

[13]  R. Atkin,et al.  Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the Au(111)-ionic liquid interface as a function of potential. , 2013, Physical chemistry chemical physics : PCCP.

[14]  E. Wanless,et al.  Adsorbed and near-surface structure of ionic liquids determines nanoscale friction. , 2013, Chemical communications.

[15]  S. Seki,et al.  Intermolecular interactions in Li+-glyme and Li+-glyme-TFSA- complexes: relationship with physicochemical properties of [Li(glyme)][TFSA] ionic liquids. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  D. Macfarlane,et al.  Ab initio prediction of proton NMR chemical shifts in imidazolium ionic liquids. , 2013, The journal of physical chemistry. B.

[17]  Rob Atkin,et al.  Adsorbed and near surface structure of ionic liquids at a solid interface. , 2013, Physical chemistry chemical physics : PCCP.

[18]  R. Atkin,et al.  Interfaces of Ionic Liquids (2) , 2012 .

[19]  R. Atkin,et al.  In situ STM, AFM and DTS study of the interface 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate/Au(1 1 1) , 2012 .

[20]  V. Presser,et al.  Nanoscale perturbations of room temperature ionic liquid structure at charged and uncharged interfaces. , 2012, ACS nano.

[21]  M. Watanabe,et al.  Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? , 2012, The journal of physical chemistry. B.

[22]  D. Dragoni,et al.  Interfacial layering of a room-temperature ionic liquid thin film on mica: a computational investigation. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  F. Endres Interfaces of ionic liquids. , 2012, Physical chemistry chemical physics : PCCP.

[24]  P. Grütter,et al.  Atomic force microscopy in viscous ionic liquids. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[25]  Jiawei Yan,et al.  Probing double layer structures of Au (111)-BMIPF6 ionic liquid interfaces from potential-dependent AFM force curves. , 2012, Chemical communications.

[26]  M. Watanabe,et al.  Correlation between Battery Performance and Lithium Ion Diffusion in Glyme–Lithium Bis(trifluoromethanesulfonyl)amide Equimolar Complexes , 2012 .

[27]  R. Atkin,et al.  The interface ionic liquid(s)/electrode(s): in situ STM and AFM measurements. , 2012, Faraday discussions.

[28]  C. Angell,et al.  Ionic liquids: past, present and future. , 2012, Faraday discussions.

[29]  R. Atkin,et al.  Probing the protic ionic liquid surface using X-ray reflectivity. , 2011, Physical chemistry chemical physics : PCCP.

[30]  S. Seki,et al.  Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. , 2011, Journal of the American Chemical Society.

[31]  R. Atkin,et al.  Pronounced sponge-like nanostructure in propylammonium nitrate. , 2011, Physical chemistry chemical physics : PCCP.

[32]  T. Welton,et al.  Self-assembly in the electrical double layer of ionic liquids. , 2011, Chemical communications.

[33]  Rob Atkin,et al.  An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction. , 2011, Physical chemistry chemical physics : PCCP.

[34]  Matthew K. Tam,et al.  Double Layer Structure of Ionic Liquids at the Au(111) Electrode Interface: An Atomic Force Microscopy Investigation , 2011 .

[35]  R. Atkin,et al.  Amphiphilicity determines nanostructure in protic ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[36]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[37]  John Ralston,et al.  Differential capacitance of the double layer at the electrode/ionic liquids interface. , 2010, Physical chemistry chemical physics : PCCP.

[38]  R. Atkin,et al.  At the interface: solvation and designing ionic liquids. , 2010, Physical chemistry chemical physics : PCCP.

[39]  T. Albrecht,et al.  Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces. , 2010, Physical chemistry chemical physics : PCCP.

[40]  F. Leermakers,et al.  Room-temperature ionic liquids: excluded volume and ion polarizability effects in the electrical double-layer structure and capacitance. , 2009, Physical review letters.

[41]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[42]  R. Atkin,et al.  AFM and STM Studies on the Surface Interaction of [BMP]TFSA and [EMIm]TFSA Ionic Liquids with Au(111) , 2009 .

[43]  R. Atkin,et al.  Pronounced structure in confined aprotic room-temperature ionic liquids. , 2009, The journal of physical chemistry. B.

[44]  R. Atkin,et al.  Influence of temperature and molecular structure on ionic liquid solvation layers. , 2009, The journal of physical chemistry. B.

[45]  B. Ocko,et al.  Molecular Layering of Fluorinated Ionic Liquids at a Charged Sapphire (0001) Surface , 2008, Science.

[46]  Lars Kloo,et al.  Ionic liquid electrolytes for dye-sensitized solar cells. , 2008, Dalton transactions.

[47]  John Ralston,et al.  Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids: Influence of Potential, Cation Size, and Temperature , 2008 .

[48]  K. B. Oldham A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface , 2008 .

[49]  S. Baldelli,et al.  A Sum Frequency Generation Study of the Room-Temperature Ionic Liquid−Titanium Dioxide Interface , 2008 .

[50]  T. Ohsaka,et al.  Ionic Liquid Structure Dependent Electrical Double Layer at the Mercury Interface , 2008 .

[51]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[52]  F. Endres,et al.  Ionic liquids: the link to high-temperature molten salts? , 2007, Accounts of chemical research.

[53]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[54]  R. Atkin,et al.  Structure in Confined Room-Temperature Ionic Liquids , 2007 .

[55]  A. Lewandowski,et al.  Ionic liquids as electrolytes , 2006 .

[56]  S. Baldelli,et al.  Sum frequency generation study of the room-temperature ionic liquids/quartz interface. , 2006, The journal of physical chemistry. B.

[57]  F. Endres,et al.  In situ STM investigation of gold reconstruction and of silicon electrodeposition on Au(111) in the room temperature ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. , 2006, The journal of physical chemistry. B.

[58]  A. Maali,et al.  Oscillatory dissipation of a simple confined liquid. , 2006, Physical review letters.

[59]  I. Larson,et al.  Atomic force microscopy and direct surface force measurements (IUPAC Technical Report) , 2005 .

[60]  S. O’Shea,et al.  Discrete solvation layering in confined binary liquids. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[61]  Sam F. Y. Li,et al.  Solvation Forces Using Sample-Modulation Atomic Force Microscopy , 2002 .

[62]  S. O’Shea,et al.  Solvation forces in branched molecular liquids. , 2002, Physical review letters.

[63]  Frank Endres,et al.  Ionic liquids: solvents for the electrodeposition of metals and semiconductors. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[64]  V. Koch,et al.  Differential Capacitance Measurements in Solvent‐Free Ionic Liquids at Hg and C Interfaces , 1997 .

[65]  M. Welland,et al.  Atomic force microscopy of local compliance at solid—liquid interfaces , 1994 .

[66]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[67]  D. F. Evans,et al.  Double-layer and solvation forces measured in a molten salt and its mixtures with water , 1988 .

[68]  M. Tosi,et al.  Structure and dynamics of molten salts , 1986 .

[69]  S. Biggin,et al.  Comments on the structure of molten salts , 1982 .

[70]  H. Jenkins,et al.  Reappraisal of Thermochemical Radii for Complex Ions. , 1979 .

[71]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[72]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[73]  H. Helmholtz,et al.  Studien über electrische Grenzschichten , 1879 .