The origins of the directionality of noncovalent intermolecular interactions#

The recent σ‐hole concept emphasizes the contribution of electrostatic attraction to noncovalent bonds, and implies that the electrostatic force has an angular dependency. Here a set of clusters, which includes hydrogen bonding, halogen bonding, chalcogen bonding, and pnicogen bonding systems, is investigated to probe the magnitude of covalency and its contribution to the directionality in noncovalent bonding. The study is based on the block‐localized wavefunction (BLW) method that decomposes the binding energy into the steric and the charge transfer (CT) (hyperconjugation) contributions. One unique feature of the BLW method is its capability to derive optimal geometries with only steric effect taken into account, while excluding the CT interaction. The results reveal that the overall steric energy exhibits angular dependency notably in halogen bonding, chalcogen bonding, and pnicogen bonding systems. Turning on the CT interactions further shortens the intermolecular distances. This bond shortening enhances the Pauli repulsion, which in turn offsets the electrostatic attraction, such that in the final sum, the contribution of the steric effect to bonding is diminished, leaving the CT to dominate the binding energy. In several other systems particularly hydrogen bonding systems, the steric effect nevertheless still plays the major role whereas the CT interaction is minor. However, in all cases, the CT exhibits strong directionality, suggesting that the linearity or near linearity of noncovalent bonds is largely governed by the charge‐transfer interaction whose magnitude determines the covalency in noncovalent bonds. © 2015 Wiley Periodicals, Inc.

[1]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[2]  Yirong Mo,et al.  XMVB 2.0: A new version of Xiamen valence bond program , 2015 .

[3]  Alexander D. MacKerell,et al.  Current status of protein force fields for molecular dynamics simulations. , 2015, Methods in molecular biology.

[4]  Yirong Mo,et al.  Two states are not enough: quantitative evaluation of the valence-bond intramolecular charge-transfer model and its use in predicting bond length alternation effects. , 2014, Chemistry.

[5]  Kelling J. Donald,et al.  Halogen bonding: unifying perspectives on organic and inorganic cases. , 2014, The journal of physical chemistry. A.

[6]  Sason Shaik,et al.  On The Nature of the Halogen Bond. , 2014, Journal of chemical theory and computation.

[7]  P. Hiberty,et al.  On the nature of blueshifting hydrogen bonds. , 2014, Chemistry.

[8]  S. Shaik,et al.  The Chemical Bond: Fundamental Aspects of Chemical Bonding , 2014 .

[9]  P. Hiberty,et al.  The Valence Bond Perspective of the Chemical Bond , 2014 .

[10]  Yirong Mo,et al.  Electron transfer in pnicogen bonds. , 2014, The journal of physical chemistry. A.

[11]  José Elguero,et al.  On the Reliability of Pure and Hybrid DFT Methods for the Evaluation of Halogen, Chalcogen, and Pnicogen Bonds Involving Anionic and Neutral Electron Donors. , 2013, Journal of chemical theory and computation.

[12]  Pierangelo Metrangolo,et al.  The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances , 2013, Accounts of chemical research.

[13]  Timothy Clark,et al.  Halogen bonding and other σ-hole interactions: a perspective. , 2013, Physical chemistry chemical physics : PCCP.

[14]  Santiago Alvarez,et al.  A cartography of the van der Waals territories. , 2013, Dalton transactions.

[15]  Sławomir J Grabowski,et al.  Hydrogen and halogen bonds are ruled by the same mechanisms. , 2013, Physical chemistry chemical physics : PCCP.

[16]  Darren W. Johnson,et al.  Ion-π interactions in ligand design for anions and main group cations. , 2013, Accounts of chemical research.

[17]  Anthony J. Stone,et al.  The Theory of Intermolecular Forces , 2013 .

[18]  D. Quiñonero,et al.  Halogen bonding versus chalcogen and pnicogen bonding: a combined Cambridge structural database and theoretical study , 2013 .

[19]  José Elguero,et al.  Phosphorus as a simultaneous electron-pair acceptor in intermolecular P···N pnicogen bonds and electron-pair donor to Lewis acids. , 2013, The journal of physical chemistry. A.

[20]  S. Scheiner Sensitivity of noncovalent bonds to intermolecular separation: hydrogen, halogen, chalcogen, and pnicogen bonds , 2013 .

[21]  Jan M. L. Martin,et al.  Halogen Bonds: Benchmarks and Theoretical Analysis. , 2013, Journal of chemical theory and computation.

[22]  Steve Scheiner,et al.  The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. , 2013, Accounts of chemical research.

[23]  Timothy Clark,et al.  σ-Holes: σ-Holes , 2013 .

[24]  Y. Mo Can QTAIM topological parameters be a measure of hydrogen bonding strength? , 2012, The journal of physical chemistry. A.

[25]  V. Lippolis,et al.  Adducts of S/Se Donors with Dihalogens as a Source of Information for Categorizing the Halogen Bonding , 2012 .

[26]  Steve Scheiner,et al.  Sensitivity of Pnicogen, Chalcogen, Halogen and H-Bonds to Angular Distortions , 2012 .

[27]  Sason Shaik,et al.  Classical valence bond approach by modern methods. , 2011, Chemical reviews.

[28]  Steve Scheiner,et al.  Effects of substituents upon the P···N noncovalent interaction: the limits of its strength. , 2011, The journal of physical chemistry. A.

[29]  Barbara Kirchner,et al.  Pnicogen bonds: a new molecular linker? , 2011, Chemistry.

[30]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[31]  Steve Scheiner,et al.  A new noncovalent force: comparison of P···N interaction with hydrogen and halogen bonds. , 2011, The Journal of chemical physics.

[32]  Sławomir Janusz Grabowski,et al.  What is the covalency of hydrogen bonding? , 2011, Chemical reviews.

[33]  François Diederich,et al.  Systematic investigation of halogen bonding in protein-ligand interactions. , 2011, Angewandte Chemie.

[34]  Peter Politzer,et al.  Directional tendencies of halogen and hydrogen bonds , 2010 .

[35]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[36]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[37]  Pavel Hobza,et al.  Non-Covalent Interactions: Theory and Experiment , 2009 .

[38]  F. Matthias Bickelhaupt,et al.  A chemist's guide to valence bond theory , 2009, J. Comput. Chem..

[39]  Paul W Ayers,et al.  Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies. , 2009, The Journal of chemical physics.

[40]  J Rossmeisl,et al.  Density functional theory based screening of ternary alkali-transition metal borohydrides: a computational material design project. , 2009, The Journal of chemical physics.

[41]  A. Stone,et al.  Charge-transfer in Symmetry-Adapted Perturbation Theory , 2009 .

[42]  Weiliang Zhu,et al.  Halogen bonding--a novel interaction for rational drug design? , 2009, Journal of medicinal chemistry.

[43]  P Shing Ho,et al.  Halogen bonds as orthogonal molecular interactions to hydrogen bonds. , 2009, Nature chemistry.

[44]  Wei Wu,et al.  An efficient algorithm for energy gradients and orbital optimization in valence bond theory , 2009, J. Comput. Chem..

[45]  Jean-Philip Piquemal,et al.  Fragment-Localized Kohn-Sham Orbitals via a Singles Configuration-Interaction Procedure and Application to Local Properties and Intermolecular Energy Decomposition Analysis. , 2008, Journal of chemical theory and computation.

[46]  Ronald J. Gillespie,et al.  Fifty years of the VSEPR model , 2008 .

[47]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[48]  M. Nascimento,et al.  The nature of the chemical bond , 2008 .

[49]  Yuchun Lin,et al.  Block-localized wavefunction (BLW) method at the density functional theory (DFT) level. , 2007, The journal of physical chemistry. A.

[50]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[51]  Peter Politzer,et al.  An overview of halogen bonding , 2007, Journal of molecular modeling.

[52]  Sason Shaik,et al.  A survey of recent developments in ab initio valence bond theory , 2007, J. Comput. Chem..

[53]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[54]  E. Francisco,et al.  The nature of the hydrogen bond: a synthesis from the interacting quantum atoms picture. , 2006, The Journal of chemical physics.

[55]  Horst Köppel,et al.  Theoretical investigations on chalcogen-chalcogen interactions: what makes these nonbonded interactions bonding? , 2006, Journal of the American Chemical Society.

[56]  Wei Wu,et al.  XMVB : A program for ab initio nonorthogonal valence bond computations , 2005, J. Comput. Chem..

[57]  Pierangelo Metrangolo,et al.  Halogen bonding based recognition processes: a world parallel to hydrogen bonding. , 2005, Accounts of chemical research.

[58]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Célia Fonseca Guerra,et al.  Hydrogen bonding in mimics of Watson-Crick base pairs involving C-H proton donor and F proton acceptor groups: a theoretical study. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[60]  Yirong Mo,et al.  Geometrical optimization for strictly localized structures , 2003 .

[61]  F. Weinhold,et al.  Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. , 2003, Journal of the American Chemical Society.

[62]  D. Werz,et al.  Nanotube formation favored by chalcogen-chalcogen interactions. , 2002, Journal of the American Chemical Society.

[63]  Shuji Tomoda,et al.  Statistical and theoretical investigations on the directionality of nonbonded S...O interactions. Implications for molecular design and protein engineering. , 2002, Journal of the American Chemical Society.

[64]  G. Gallup,et al.  Valence Bond Methods: Theory and Applications , 2002 .

[65]  Georg Jansen,et al.  First-order intermolecular interaction energies from Kohn–Sham orbitals , 2002 .

[66]  Jiali Gao,et al.  Cation−π Interactions: An Energy Decomposition Analysis and Its Implication in δ-Opioid Receptor−Ligand Binding , 2002 .

[67]  M. Yáñez,et al.  Competition between X···H···Y Intramolecular Hydrogen Bonds and X····Y (X = O, S, and Y = Se, Te) Chalcogen-Chalcogen Interactions , 2002 .

[68]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[69]  C. Chabalowski,et al.  Using Kohn−Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions , 2001 .

[70]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond , 2001 .

[71]  G. Gilli,et al.  Towards an unified hydrogen-bond theory , 2000 .

[72]  Fokke Dijkstra,et al.  Gradients in valence bond theory , 1999 .

[73]  Y. Mo,et al.  Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach , 2000 .

[74]  Ernest R. Davidson,et al.  Is the Hydrogen Bond in Water Dimer and Ice Covalent , 2000 .

[75]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond: In Structural Chemistry and Biology , 1999 .

[76]  Anthony C. Legon,et al.  Prereactive Complexes of Dihalogens XY with Lewis Bases B in the Gas Phase: A Systematic Case for the Halogen Analogue B⋅⋅⋅XY of the Hydrogen Bond B⋅⋅⋅HX , 1999 .

[77]  Kenneth M. Merz,et al.  Divide and Conquer Interaction Energy Decomposition , 1999 .

[78]  E. D. Isaacs,et al.  Covalency of the Hydrogen Bond in Ice: A Direct X-Ray Measurement , 1999 .

[79]  R. Mcweeny An ab initio form of classical valence‐bond theory , 1999 .

[80]  Anan Wu,et al.  Efficient algorithm for the spin-free valence bond theory. I. New strategy and primary expressions , 1998 .

[81]  Y. Mo,et al.  Theoretical analysis of electronic delocalization , 1998 .

[82]  D. L. Cooper,et al.  Nonorthogonal weights of modern VB wavefunctions. Implementation and applications within CASVB , 1998 .

[83]  Steve Scheiner,et al.  Hydrogen Bonding: A Theoretical Perspective , 1997 .

[84]  G. A. Jeffrey,et al.  An Introduction to Hydrogen Bonding , 1997 .

[85]  M. Gordon,et al.  Understanding the Hydrogen Bond Using Quantum Chemistry , 1996 .

[86]  Mark S. Gordon,et al.  Energy Decomposition Analyses for Many-Body Interaction and Applications to Water Complexes , 1996 .

[87]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[88]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[89]  Eric D. Glendening,et al.  Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor–acceptor interactions , 1994 .

[90]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[91]  M. Szczęśniak,et al.  On the connection between the supermolecular Møller-Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces , 1988 .

[92]  William H. Fink,et al.  Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer , 1987 .

[93]  Mario Raimondi,et al.  The electronic structure of the benzene molecule , 1986, Nature.

[94]  F. Weinhold,et al.  Natural population analysis , 1985 .

[95]  Paul S. Bagus,et al.  A new analysis of charge transfer and polarization for ligand–metal bonding: Model studies of Al4CO and Al4NH3 , 1984 .

[96]  J. H. van Lenthe,et al.  The valence‐bond self‐consistent field method (VB–SCF): Theory and test calculations , 1983 .

[97]  J. H. van Lenthe,et al.  The valence-bond scf (VB SCF) method.: Synopsis of theory and test calculation of oh potential energy curve , 1980 .

[98]  K. Szalewicz,et al.  Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions , 1979 .

[99]  Arvi Rauk,et al.  On the calculation of bonding energies by the Hartree Fock Slater method , 1977 .

[100]  Keiji Morokuma,et al.  Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity , 1977 .

[101]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[102]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[103]  A. Bondi van der Waals Volumes and Radii , 1964 .

[104]  F. D. Greene Resonance in organic chemistry , 1956 .

[105]  R. S. Mulliken Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents1 , 1950 .

[106]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.