Generalising the GHS attack on the elliptic curve discrete logarithm
暂无分享,去创建一个
[1] Hilarie K. Orman,et al. The OAKLEY Key Determination Protocol , 1997, RFC.
[2] Alfred Menezes,et al. Analysis of the GHS Weil Descent Attack on the ECDLP over Characteristic Two Finite Fields of Composite Degree , 2001, INDOCRYPT.
[3] Nicolas Thériault,et al. Weil Descent Attack for Artin-Schreier Curves , 2003 .
[4] Steven D. Galbraith,et al. A Cryptographic Application of Weil Descent , 1999, IMACC.
[5] Matthew K. Franklin,et al. Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.
[6] Alfred Menezes,et al. Solving Elliptic Curve Discrete Logarithm Problems Using Weil Descent , 2001, IACR Cryptol. ePrint Arch..
[7] Ian F. Blake,et al. Elliptic curves in cryptography , 1999 .
[8] Alfred Menezes,et al. Reducing elliptic curve logarithms to logarithms in a finite field , 1991, STOC '91.
[9] Steven D. Galbraith,et al. Extending the GHS Weil Descent Attack , 2002, EUROCRYPT.
[10] G. Frey,et al. A remark concerning m -divisibility and the discrete logarithm in the divisor class group of curves , 1994 .
[11] H. Stichtenoth,et al. Elementary Abelianp-extensions of algebraic function fields , 1991 .
[12] Florian Hess,et al. Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics , 2002, J. Symb. Comput..
[13] J. Tyrrell,et al. ALGEBRAIC NUMBER THEORY , 1969 .
[14] Nigel P. Smart,et al. Constructive and destructive facets of Weil descent on elliptic curves , 2002, Journal of Cryptology.
[15] Seigo Arita,et al. Weil Descent of Elliptic Curves over Finite Fields of Characteristic Three , 2000, ASIACRYPT.
[16] C. Diem. The GHS-attack in odd characteristic , 2003 .
[17] Jean-Jacques Quisquater,et al. A Secure Family of Composite Finite Fields Suitable for Fast Implementation of Elliptic Curve Cryptography , 2001, INDOCRYPT.
[18] Editors , 1986, Brain Research Bulletin.
[19] Alfred Menezes,et al. Analysis of the Weil Descent Attack of Gaudry, Hess and Smart , 2001, CT-RSA.
[20] Nigel P. Smart,et al. How Secure Are Elliptic Curves over Composite Extension Fields? , 2001, EUROCRYPT.
[21] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[22] Steven D. Galbraith,et al. Weil Descent of Jacobians , 2001, Discret. Appl. Math..