On debonding and delamination effects in adhesively bonded cracks —A boundary integral approach

SummaryThe present paper studies the influence of adhesives on the behaviour of cracks in two-dimensional linear elastic bodies. Especially the delamination and debonding effects are studied. The adhesive material is assumed to introduce non-monotone, possibly multivalued laws which can be described via non-convex superpotentials. The direct boundary integral equation method is extended for this problem. It gives rise to two equivalent multivalued integral equations holding on each crack. Numerical examples concerning the resulting stress intensity factors illustrate the theory.ÜbersichtIn dieser Arbeit wird der Einfluß von adhäsiven Materialien auf das Verhalten der Risse in zweidimensionalen linear-elastischen Körpern untersucht. Insbesondere werden Delaminations- und Entklebeeffekte behandelt. Es wird angenommen, daß das adhäsive Material ein nichtmonotones mehrdeutiges Gesetz einführt, das durch nichtkonvexe Superpotentiale beschreiben werden kann. Die direkte Randwertintegralmethode wird für dieses Problem erweitert. Man erhält zwei äquivalente, mehrdeutige Integralgleichungen für jeden Riß. Die Theorie wird durch numerische Beispiele erläutert, die die Berechnung der auftretenden Spannungskonzentrationsfaktoren betreffen.

[1]  J. Kalker,et al.  A minimum principle for frictionless elastic contact with application to non-Hertzian half-space contact problems , 1972 .

[2]  P. Panagiotopoulos,et al.  A variational-hemivariational inequality approach to the laminated plate theory under subdifferential boundary conditions , 1988 .

[3]  Anthony R. Ingraffea,et al.  Two‐dimensional stress intensity factor computations using the boundary element method , 1981 .

[4]  P. D. Panagiotopoulos,et al.  Multivalued boundary integral equations for inequality problems. The nonconvex case , 1987 .

[5]  P. Panagiotopoulos,et al.  Interlayer Slip and Delamination Effect: A Hemivariational Inequality Approach* , 1987 .

[6]  J. Moreau,et al.  Topics in Nonsmooth Mechanics , 1988 .

[7]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[8]  J. Moreau,et al.  Nonsmooth Mechanics and Applications , 1989 .

[9]  S. K. Maiti,et al.  On the use of one point and two points singularity elements in the analysis of kinked cracks , 1990 .

[10]  P. Panagiotopoulos Semicoercive hemivariational inequalities. On the delamination of composite plates , 1989 .

[11]  P. Panagiotopoulos,et al.  A hemivariational inequality and substationarity approach to the interface problem: Theory and prospects of applications , 1984 .

[12]  P. Panagiotopoulos Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions , 1985 .

[13]  H. Bufler Derivation of the variational inequalities and extremum principles of the frictionless elastic contact problem , 1985 .

[14]  Z. Naniewicz On some nonmonotone subdifferential boundary conditions in elastostatics , 1989 .

[15]  Pericles S. Theocaris,et al.  The kinked crack solved by Mellin transform , 1986 .

[16]  Pericles S. Theocaris,et al.  Crack kinking in anti-plane shear solved by the Mellin transform , 1987 .

[17]  Z. Naniewicz On some nonconvex variational problems related to hemivariational inequalities , 1988 .

[18]  C. Woźniak,et al.  On a quasi-stationary model of debonding processes in layered composites , 1988 .

[19]  P. D. Panagiotopoulos,et al.  Nonconvex energy functions. Hemivariational inequalities and substationarity principles , 1983 .