Structure of DRE, a retrotransposable element which integrates with position specificity upstream of Dictyostelium discoideum tRNA genes

Different Dictyostelium discoideum strains contain between 2 and 200 copies of a retrotransposable element termed DRE (Dictyostelium repetitive element). From the analysis of more than 50 elements, it can be concluded that DRE elements always occur 50 +/- 3 nucleotides upstream of tRNA genes. All analyzed clones contain DRE in a constant orientation relative to the tRNA gene, implying orientation specificity as well as position specificity. DRE contains two open reading frames which are flanked by nonidentical terminal repeats. Long terminal repeats (LTRs) are composed of three distinct modules, called A, B, and C. The tRNA gene-proximal LTR is characterized by one or multiple A modules followed by a single B module (AnB). With respect to the distal LTR, two different subforms of DRE have been isolated. The majority of isolated clones contains a distal LTR composed of a B module followed by a C module (BC), whereas the distal LTR of the other subform contains a consecutive array of a B module, a C module, a slightly altered A module, another B module, and another C module (BC.ABC). Full-length as well as smaller transcripts from DRE elements have been detected, but in comparison with the high copy number in D. discoideum strains derived from the wild-type strain NC4, transcription is rather poor.

[1]  D. Chalker,et al.  Transfer RNA genes are genomic targets for de Novo transposition of the yeast retrotransposon Ty3. , 1990, Genetics.

[2]  T. Dingermann,et al.  Genomic organization of the transposable element Tdd-3 from Dictyostelium discoideum. , 1990, Nucleic Acids Research.

[3]  T. Eickbush,et al.  Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.

[4]  Philip J. Farabaugh,et al.  Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site , 1990, Cell.

[5]  D. Hatfield,et al.  The where, what and how of ribosomal frameshifting in retroviral protein synthesis , 1990, Trends in Biochemical Sciences.

[6]  S. Aksoy,et al.  SLACS retrotransposon from Trypanosoma brucei gambiense is similar to mammalian LINEs. , 1990, Nucleic acids research.

[7]  E. Geiduschek,et al.  S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors , 1990, Cell.

[8]  D. Chalker,et al.  Integration specificity of retrotransposons and retroviruses. , 1990, Annual review of genetics.

[9]  E. Geiduschek,et al.  Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes , 1989, Molecular and cellular biology.

[10]  I. Brierley,et al.  Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot , 1989, Cell.

[11]  Albert Spielmann,et al.  Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics , 1989, Nature.

[12]  D. Finnegan The I factor and I-R hybrid dysgenesis in Drosophila melanogaster , 1989 .

[13]  J. Boeke,et al.  Transcription and reverse transcription of retrotransposons. , 1989, Annual review of microbiology.

[14]  M. Tuite,et al.  A highly conserved sequence in yeast heat shock gene promoters. , 1988, Nucleic acids research.

[15]  D. Chalker,et al.  Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses , 1988, Molecular and cellular biology.

[16]  H. Varmus,et al.  Signals for ribosomal frameshifting in the rous sarcoma virus gag-pol region , 1988, Cell.

[17]  D. Voytas,et al.  A copia-like transposable element family in Arabidopsis thaliana , 1988, Nature.

[18]  J. Rochaix,et al.  A transposon with an unusual arrangement of long terminal repeats in the green alga Chlamydomonas reinhardtii. , 1988, The EMBO journal.

[19]  P. Morcos,et al.  Sigma elements are position-specific for many different yeast tRNA genes. , 1988, Nucleic acids research.

[20]  S. Sandmeyer,et al.  A yeast sigma composite element, TY3, has properties of a retrotransposon. , 1988, The Journal of biological chemistry.

[21]  T. Eickbush,et al.  The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons , 1988, Molecular and cellular biology.

[22]  T. Dingermann,et al.  A family of non-allelic tRNA(ValGUU) genes from the cellular slime mold Dictyostelium discoideum. , 1988, Gene.

[23]  M. Melli,et al.  The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter , 1987, Cell.

[24]  T. Eickbush,et al.  The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme , 1987, Molecular and cellular biology.

[25]  H. Beier,et al.  Natural UAG suppressor glutamine tRNA is elevated in mouse cells infected with Moloney murine leukemia virus. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[26]  B. E. Kimmel,et al.  Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs , 1987, Molecular and cellular biology.

[27]  K. Saigo,et al.  Nucleotide sequence characterization of a Drosophila retrotransposon, 412. , 1986, European journal of biochemistry.

[28]  K. Saigo,et al.  Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. , 1986, European journal of biochemistry.

[29]  H. Varmus,et al.  Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. , 1985, Science.

[30]  H. Lodish,et al.  Sequence of Dictyostelium DIRS-1: An apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence , 1985, Cell.

[31]  C. Newlon,et al.  Nucleotide sequence characterization of Ty 1-17, a class II transposon from yeast. , 1985, Nucleic acids research.

[32]  P. Farabaugh,et al.  Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Kingsman,et al.  A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon Ty1 , 1985, Nature.

[34]  H. Lodish,et al.  Structure and regulated transcription of DIRS-1: an apparent retrotransposon of Dictyostelium discoideum. , 1985, Cold Spring Harbor Symposia on Quantitative Biology.

[35]  Y. Matsuo,et al.  Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster , 1984, Nature.

[36]  M. Meselson,et al.  Long terminal repeat nucleotide sequence and specific insertion of the gypsy transposon. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Firtel,et al.  Genomic instability and mobile genetic elements in regions surrounding two discoidin I genes of Dictyostelium discoideum , 1984, Molecular and cellular biology.

[38]  K. Saigo,et al.  Sequence-specific insertion of the Drosophila transposable genetic element 17.6 , 1984, Nature.

[39]  R. Firtel,et al.  An unusual transposon encoding heat shock inducible and developmentally regulated transcripts in Dictyostelium , 1983, Cell.

[40]  K. Williams,et al.  A genetic map of Dictyostelium discoideum based on mitotic recombination. , 1982, Genetics.

[41]  K. Saigo,et al.  Insertion of a movable genetic element, 297, into the T-A-T-A box for the H3 histone gene in Drosophila melanogaster. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[42]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Ashworth,et al.  Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. , 1970, The Biochemical journal.