Applying simulation optimization to the asset allocation of a property-casualty insurer

Proper asset allocations are vital for property-casualty insurers to be competitive and solvent. Theories of finance offer little practical guidance in constructing such asset allocations however. This research integrates simulation models with a newly developed evolutionary algorithm for the multi-period asset allocation problem of a property-casualty insurer. We first construct a simulation model to simulate operations of a property-casualty insurer. Then we develop multi-phase evolution strategies (MPES) to be used with the simulation model to search for promising asset allocations for the insurer. A thorough experiment is conducted to evaluate the performance of our simulation optimization approach. Computational results show that MPES is an effective search algorithm. It dominates the grid search method by a significant margin. The re-allocation strategy resulting from MPES outperforms re-balancing strategies significantly. This research further demonstrates that the simulation optimization approach can be used to study economic issues related to multi-period asset allocation problems in practical settings.

[1]  William F. Sharpe,et al.  Liabilities— A New Approach , 1990 .

[2]  Stephen P. D'Arcy,et al.  The Use of Dynamic Financial Analysis to Determine Whether an Optimal Growth Rate Exists for a Property-Liability Insurer , 2004 .

[3]  Timothy M. Craft Impact of Pension Plan Liabilities on Real Estate Investment , 2005 .

[4]  J. Cox,et al.  Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .

[5]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[6]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[7]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[8]  Jerry Banks,et al.  Handbook of simulation - principles, methodology, advances, applications, and practice , 1998, A Wiley-Interscience publication.

[9]  Eduardo S. Schwartz,et al.  Strategic asset allocation , 1997 .

[10]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[11]  Michael C. Fu,et al.  Optimization via simulation: A review , 1994, Ann. Oper. Res..

[12]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[13]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[14]  Xin Yao,et al.  Fast Evolutionary Programming , 1996, Evolutionary Programming.

[15]  R. C. Merton,et al.  Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .

[16]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[17]  Volker Nissen,et al.  Evolutionary Algorithms in Management Applications , 1995 .

[18]  Ihsan Sabuncuoglu,et al.  Simulation optimization: A comprehensive review on theory and applications , 2004 .

[19]  Sigurdur Olafsson,et al.  Simulation optimization , 2002, Proceedings of the Winter Simulation Conference.

[20]  J. Campbell Asset Pricing at the Millennium , 2000, The Journal of Finance.

[21]  Roger Kaufmann,et al.  Introduction to Dynamic Financial Analysis , 2001 .

[22]  Bidyut B. Chaudhuri,et al.  A hierarchical genetic algorithm with search space partitioning scheme , 2003, IEMC '03 Proceedings. Managing Technologically Driven Organizations: The Human Side of Innovation and Change (IEEE Cat. No.03CH37502).

[23]  Duan Li,et al.  Asset and liability management under a continuous-time mean–variance optimization framework , 2006 .