Learning in Relational Networks

[1]  J. Lafferty,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[2]  Yiming Yang,et al.  Personalized active learning for collaborative filtering , 2008, SIGIR '08.

[3]  Luo Si,et al.  A Bayesian Approach toward Active Learning for Collaborative Filtering , 2004, UAI.

[4]  Martha Larson,et al.  Tags as bridges between domains: improving recommendation with tag-induced cross-domain collaborative filtering , 2011, UMAP'11.

[5]  Piotr Indyk,et al.  Enhanced hypertext categorization using hyperlinks , 1998, SIGMOD '98.

[6]  Krzysztof Dembczy Multi-Label Classication , 2013 .

[7]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[8]  Foster J. Provost,et al.  Classification in Networked Data: a Toolkit and a Univariate Case Study , 2007, J. Mach. Learn. Res..

[9]  Huzefa Rangwala,et al.  Multi-label Collective Classification Using Adaptive Neighborhoods , 2012, 2012 11th International Conference on Machine Learning and Applications.

[10]  Christos Faloutsos,et al.  Sampling from large graphs , 2006, KDD '06.

[11]  Shlomo Argamon,et al.  Committee-Based Sampling For Training Probabilistic Classi(cid:12)ers , 1995 .

[12]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[13]  Hui Xiong,et al.  User Preference Learning with Multiple Information Fusion for Restaurant Recommendation , 2014, SDM.

[14]  Sofus A. Macskassy Using graph-based metrics with empirical risk minimization to speed up active learning on networked data , 2009, KDD.

[15]  Sean M. McNee,et al.  Getting to know you: learning new user preferences in recommender systems , 2002, IUI '02.

[16]  David M. Pennock,et al.  Categories and Subject Descriptors , 2001 .

[17]  Yi-Cheng Zhang,et al.  Tag-Aware Recommender Systems: A State-of-the-Art Survey , 2011, Journal of Computer Science and Technology.

[18]  Huan Liu,et al.  Relational learning via latent social dimensions , 2009, KDD.

[19]  Jie Tang,et al.  Batch Mode Active Learning for Networked Data , 2012, TIST.

[20]  Yehuda Koren,et al.  The BellKor Solution to the Netflix Grand Prize , 2009 .

[21]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[22]  Ramana Rao Kompella,et al.  Time-based sampling of social network activity graphs , 2010, MLG '10.

[23]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[24]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[25]  Ramana Rao Kompella,et al.  Network Sampling Designs for Relational Classification , 2012, ICWSM.

[26]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[27]  Nan Du,et al.  Improved recommendation based on collaborative tagging behaviors , 2008, IUI '08.

[28]  Lise Getoor,et al.  Active Learning for Networked Data , 2010, ICML.

[29]  Huzefa Rangwala,et al.  FLIP: Active Learning for Relational Network Classification , 2014, ECML/PKDD.

[30]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.

[31]  Steffen Rendle Scaling Factorization Machines to Relational Data , 2013, Proc. VLDB Endow..

[32]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[33]  Lars Schmidt-Thieme,et al.  Semi-supervised Tag Recommendation - Using Untagged Resources to Mitigate Cold-Start Problems , 2010, PAKDD.

[34]  Steffen Rendle,et al.  Factorization Machines with libFM , 2012, TIST.

[35]  Andrew McCallum,et al.  Employing EM and Pool-Based Active Learning for Text Classification , 1998, ICML.

[36]  Jiawei Han,et al.  A Variance Minimization Criterion to Active Learning on Graphs , 2012, AISTATS.

[37]  Jennifer Neville,et al.  Relational Dependency Networks , 2007, J. Mach. Learn. Res..

[38]  Philip S. Yu,et al.  Multi-Label Collective Classification , 2011, SDM.

[39]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[40]  Francesco Ricci,et al.  Cold-Start Management with Cross-Domain Collaborative Filtering and Tags , 2013, EC-Web.

[41]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[42]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[43]  Huzefa Rangwala,et al.  Predicting Preference Tags to Improve Item Recommendation , 2015, SDM.

[44]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[45]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[46]  William A. Gale,et al.  A sequential algorithm for training text classifiers , 1994, SIGIR '94.

[47]  Kun Zhang,et al.  Multi-label learning by exploiting label dependency , 2010, KDD.

[48]  Jennifer Neville,et al.  Relational Active Learning for Joint Collective Classification Models , 2011, ICML.

[49]  Paul N. Bennett,et al.  Active Sampling of Networks , 2012 .

[50]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[51]  Ben Taskar,et al.  Discriminative Probabilistic Models for Relational Data , 2002, UAI.

[52]  Tina Eliassi-Rad,et al.  Leveraging Label-Independent Features for Classification in Sparsely Labeled Networks: An Empirical Study , 2008, SNAKDD.

[53]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[54]  Lars Schmidt-Thieme,et al.  Tag-aware recommender systems by fusion of collaborative filtering algorithms , 2008, SAC '08.