Improved Local Algorithms for Spanner Construction

Let S be a set of n points in the plane, let e be the complete Euclidean graph whose point-set is S, and let G be the Delaunay triangulation of S. We present a very simple local algorithm that, given G, constructs a subgraph of G of degree at most 11 that is a geometric spanner of G with stretch factor 2.86, and hence a geometric spanner of e with stretch factor < 7. This algorithm gives an O(n lg n) time centralized algorithm for constructing a subgraph of G that is a geometric spanner of e of degree at most 11 and stretch factor < 7. The algorithm can be generalized to unit disk graphs to give a local algorithm for constructing a plane spanner of a unit disk graph of degree at most 11 and stretch factor < 7.

[1]  Michiel H. M. Smid,et al.  Delaunay and diamond Triangulations contain Spanners of Bounded Degree , 2009, Int. J. Comput. Geom. Appl..

[2]  Carl Gutwin,et al.  Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..

[3]  Ivan Stojmenovic,et al.  Routing with Guaranteed Delivery in Ad Hoc Wireless Networks , 2001, Wirel. Networks.

[4]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[5]  Paz Carmi,et al.  Bounded Degree Planar Geometric Spanners , 2010, ArXiv.

[6]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[7]  Ge Xia,et al.  On Spanners and Lightweight Spanners of Geometric Graphs , 2010, SIAM J. Comput..

[8]  Ge Xia,et al.  Local Construction of Near-Optimal Power Spanners for Wireless Ad Hoc Networks , 2009, IEEE Transactions on Mobile Computing.

[9]  Xiang-Yang Li,et al.  Localized Delaunay Triangulation with Application in Ad Hoc Wireless Networks , 2003, IEEE Trans. Parallel Distributed Syst..

[10]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[11]  Xiang-Yang Li,et al.  Localized Construction of Bounded Degree and Planar Spanner for Wireless Ad Hoc Networks , 2006, Mob. Networks Appl..

[12]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[13]  Leonidas J. Guibas,et al.  Geometric spanners for routing in mobile networks , 2005 .

[14]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[15]  Anxiao Jiang,et al.  Separability and topology control of quasi unit disk graphs , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[16]  R. V. Benson Euclidean Geometry and Convexity , 1966 .

[17]  Michiel H. M. Smid,et al.  Diamond Triangulations Contain Spanners of Bounded Degree , 2006, ISAAC.

[18]  Ljubomir Perkovic,et al.  On Geometric Spanners of Euclidean and Unit Disk Graphs , 2008, STACS.

[19]  Xiang-Yang Li,et al.  Distributed construction of a planar spanner and routing for ad hoc wireless networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[20]  Jorge Urrutia,et al.  Compass routing on geometric networks , 1999, CCCG.

[21]  Joachim Gudmundsson,et al.  Constructing Plane Spanners of Bounded Degree and Low Weight , 2005, Algorithmica.

[22]  Ljubomir Perkovic,et al.  Plane Spanners of Maximum Degree Six , 2010, ICALP.