Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density

Asymmetric supercapacitor with high energy density has been developed successfully using graphene/MnO2 composite as positive electrode and activated carbon nanofibers (ACN) as negative electrode in a neutral aqueous Na2SO4 electrolyte. Due to the high capacitances and excellent rate performances of graphene/MnO2 and ACN, as well as the synergistic effects of the two electrodes, such asymmetric cell exhibits superior electrochemical performances. An optimized asymmetric supercapacitor can be cycled reversibly in the voltage range of 0–1.8 V, and exhibits maximum energy density of 51.1 Wh kg−1, which is much higher than that of MnO2//DWNT cell (29.1 Wh kg−1). Additionally, graphene/MnO2//ACN asymmetric supercapacitor exhibits excellent cycling durability, with 97% specific capacitance retained even after 1000 cycles. These encouraging results show great potential in developing energy storage devices with high energy and power densities for practical applications.

[1]  F. Wei,et al.  Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes , 2010 .

[2]  Wenming Qiao,et al.  A high-performance carbon derived from polyaniline for supercapacitors , 2010 .

[3]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[4]  Yusaku Isobe,et al.  High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors , 2010 .

[5]  Takeo Yamada,et al.  Extracting the Full Potential of Single‐Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density , 2010, Advanced materials.

[6]  L. Kong,et al.  Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon , 2010 .

[7]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[8]  M. Yoshio,et al.  Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors , 2010 .

[9]  François Béguin,et al.  A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte , 2010 .

[10]  Ye Hou,et al.  Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. , 2010, Nano letters.

[11]  B. Rambabu,et al.  Nanocrystalline LiCrTiO4 as anode for asymmetric hybrid supercapacitor , 2010 .

[12]  P. Novák,et al.  Characterization of bi-material electrodes for electrochemical hybrid energy storage devices , 2010 .

[13]  Qingyu Li,et al.  A novel hybrid supercapacitor based on spherical activated carbon and spherical MnO2 in a non-aqueous electrolyte , 2010 .

[14]  R. Holze,et al.  A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O , 2010 .

[15]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[16]  F. Wei,et al.  Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance , 2010 .

[17]  Shih‐Yuan Lu,et al.  A Cost‐Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide‐Driven Sol–Gel Process , 2010, Advanced materials.

[18]  Cunjiang Yu,et al.  Stretchable Supercapacitors Based on Buckled Single‐Walled Carbon‐Nanotube Macrofilms , 2009, Advanced materials.

[19]  Jie Cheng,et al.  Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities , 2009 .

[20]  R. Holze,et al.  A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2 , 2009 .

[21]  L. Kong,et al.  Asymmetric Supercapacitor Based on Loose-Packed Cobalt Hydroxide Nanoflake Materials and Activated Carbon , 2009 .

[22]  Jianling Li,et al.  Analysis of electrodes matching for asymmetric electrochemical capacitor , 2009 .

[23]  B. Rambabu,et al.  Electrochemical performance of LiNi0.5Mn1.5O4 prepared by improved solid state method as cathode in hybrid supercapacitor , 2009 .

[24]  Bin Wang,et al.  Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors , 2009 .

[25]  Shih‐Yuan Lu,et al.  Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route , 2009 .

[26]  R. Holze,et al.  V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution , 2009 .

[27]  Hongda Du,et al.  Asymmetric Activated Carbon-Manganese Dioxide Capacitors in Mild Aqueous Electrolytes Containing Alkaline-Earth Cations , 2009 .

[28]  Liangti Qu,et al.  High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes , 2009 .

[29]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[30]  Mao-Sung Wu,et al.  Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors , 2009 .

[31]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[32]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[33]  F. Béguin,et al.  High-energy density graphite/AC capacitor in organic electrolyte , 2008 .

[34]  Jingwei Sun,et al.  Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution , 2008 .

[35]  Pierre-Louis Taberna,et al.  Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor , 2007 .

[36]  Wuzong Zhou,et al.  Nanoscale microelectrochemical cells on carbon nanotubes. , 2007, Small.

[37]  B. C. Kim,et al.  Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors , 2007 .

[38]  M. Ishikawa,et al.  Aligned MWCNT Sheet Electrodes Prepared by Transfer Methodology Providing High-Power Capacitor Performance , 2007 .

[39]  A. Zolfaghari,et al.  Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method , 2007 .

[40]  Eunsung Lee,et al.  Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes , 2007 .

[41]  F. Wei,et al.  Porous and Lamella-like Fe/MgO Catalysts Prepared under Hydrothermal Conditions for High-Yield Synthesis of Double-Walled Carbon Nanotubes , 2007 .

[42]  Huakun Liu,et al.  Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors , 2006 .

[43]  Qiang Wang,et al.  A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2–B Nanowire Anode , 2006 .

[44]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[45]  François Béguin,et al.  A High‐Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer , 2006 .

[46]  Anbao Yuan,et al.  A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte , 2006 .

[47]  H. Inoue,et al.  Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte , 2006 .

[48]  Norio Miura,et al.  Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide , 2006 .

[49]  F. Béguin,et al.  High-voltage asymmetric supercapacitors operating in aqueous electrolyte , 2006 .

[50]  D. Bélanger,et al.  Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors , 2006 .

[51]  François Béguin,et al.  Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium , 2006 .

[52]  Yongyao Xia,et al.  A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system , 2005 .

[53]  W. Sugimoto,et al.  Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. , 2005, The journal of physical chemistry. B.

[54]  Mathieu Toupin,et al.  A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte , 2004 .

[55]  Seok-Hyun Lee,et al.  Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor , 2002 .

[56]  O. Park,et al.  Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes , 2002 .

[57]  O. Park,et al.  An Electrochemical Capacitor Based on a Ni ( OH ) 2/Activated Carbon Composite Electrode , 2002 .

[58]  Jean Gamby,et al.  Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors , 2001 .

[59]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .

[60]  M. Mastragostino,et al.  Carbon-Poly(3-methylthiophene) Hybrid Supercapacitors , 2001 .

[61]  W. Tong,et al.  Preparation of Nanometer-Sized Manganese Oxides by Intercalation of Organic Ammonium Ions in Synthetic Birnessite OL-1 , 2001 .

[62]  S. Suib,et al.  Syntheses of Birnessites Using Alcohols as Reducing Reagents: Effects of Synthesis Parameters on the Formation of Birnessites , 1999 .

[63]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[64]  François Béguin,et al.  Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor , 2011 .

[65]  Jiayan Luo,et al.  Electrochemical profile of an asymmetric supercapacitor using carbon-coated LiTi2(PO4)3 and active carbon electrodes , 2009 .

[66]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.