Sensor failure detection and isolation in flexible structures using system realization redundancy

Sensor failure detection and isolation for flexible structures is approached from a system realization perspective. Instead of using hardware or analytical model redundancy, system realization is utilized to provide an experimental based model redundancy. The failure detection and isolation algorithm utilizes the eigensystem realization algorithm to determine a minimum-order state-space realization of the structure in the presence of noisy measurements. The failure detection and isolation algorithm utilizes statistical comparisons of successive realizations to detect and isolate the failed sensor component. Because of the nature in which the failure detection and isolation algorithm is formulated, it is also possible to classify the failure mode of the sensor. Results are presented using both numerically simulated and actual experimental data.

[1]  R. K. Mehra,et al.  Correspondence item: An innovations approach to fault detection and diagnosis in dynamic systems , 1971 .

[2]  U. B. Desai,et al.  A Generalized Approach to q-Markov Covariance Equivalent Realizations for Discrete Systems , 1987, 1987 American Control Conference.

[3]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[4]  Richard W. Longman,et al.  Comparison of several system identification methods for flexible structures , 1991 .

[5]  M. Moonen,et al.  On- and off-line identification of linear state-space models , 1989 .

[6]  Thomas Kerr,et al.  Decentralized Filtering and Redundancy Management for Multisensor Navigation , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[7]  K. C. Daly,et al.  Generalized Likelihood Test for FDI in Redundant Sensor Configurations , 1979 .

[8]  George C. Verghese,et al.  Optimally robust redundancy relations for failure detection in uncertain systems , 1986, Autom..

[9]  J. Juang Mathematical correlation of modal-parameter-identification methods via system-realization theory , 1986 .

[10]  A. Willsky,et al.  Analytical redundancy and the design of robust failure detection systems , 1984 .

[11]  Thomas Kailath,et al.  Linear Systems , 1980 .

[12]  Raymond C. Montgomery,et al.  Failure Accommodation in Digital Flight Control Systems by Bayesian Decision Theory , 1976 .

[13]  K. Watanabe,et al.  Fault diagnosis in nonlinear chemical processes. Part I. Theory , 1983 .

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  J.J. Gertler,et al.  Survey of model-based failure detection and isolation in complex plants , 1988, IEEE Control Systems Magazine.

[16]  Jan R. Wright,et al.  An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification , 1987 .

[17]  Richard Vernon Beard,et al.  Failure accomodation in linear systems through self-reorganization. , 1971 .

[18]  Haim Baruh,et al.  Sensor-failure detection method for flexible structures , 1987 .

[19]  R. E. Kalman,et al.  On minimal partial realizations of a linear input/output map , 1971 .

[20]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[21]  P. Frank,et al.  Sensitivity Discriminating Observer Design for Instrument Failure Detection , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[22]  R. N. Claek Instrument Fault Detection , 1978 .

[23]  Alan S. Willsky,et al.  F-8 DFBW sensor failure identification using analytic redundancy , 1977 .

[24]  R. N. Clark,et al.  Instrument Fault Detection in a Pressurized Water Reactor Pressurizer , 1982 .