Nanotechnology in castable refractory

Abstract In recent times nanotechnology has drawn significant attention in the field of refractory research. Different nano-powders and colloidal suspensions have been utilized to improve the properties of refractory castables. Various studies have been carried out worldwide with nano scaled binders; such as, hydratable alumina (HA), colloidal alumina (CA), colloidal silica (CS), micro silica, etc.; to improve the thermo mechanical properties of refractory materials. Nano scaled additives are also being applied to reduce the energy consumption and to improve the densification process at lower temperatures. In this paper, the contributions of nanotechnology in selection of raw materials, the binders and choice of additives to improve the quality of refractory materials, and the future of nanotechnology in refractory research are reviewed.

[1]  X. Liu,et al.  Low‐Temperature Preparation of Titanium Carbide Coatings on Graphite Flakes from Molten Salts , 2008 .

[2]  Lei Zhao,et al.  Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes , 2012 .

[3]  Ya-wei Li,et al.  Microstructure and mechanical properties of MgOC refractories containing graphite oxide nanosheets (GONs) , 2013 .

[4]  P. Brown,et al.  Mechanisms of Reaction of Hydratable Aluminas , 2004 .

[5]  A. Bhattacharya,et al.  Ultra-low cement castables : A new generation of trough bodies for increased cast house life , 1998 .

[6]  A. Luz,et al.  Hot elastic modulus of Al2O3–SiC–SiO2–C castables , 2011 .

[7]  Haijun Zhang,et al.  Effects of silica sol on the preparation and high-temperature mechanical properties of silicon oxynitride bonded SiC castables , 2017 .

[8]  G. Ruan,et al.  The effect of microsilica on the oxidation resistance of Al2O3–SiC–SiO2–C castables with Si and B4C additives , 2016 .

[9]  Fujiwara Seiji,et al.  Wettability by Water and Oxidation Resistance of Alumina-Coated Graphite Powder , 1995 .

[10]  W. Russel Concentrated Colloidal Dispersions , 1991 .

[11]  ZHOUNingsheng,et al.  Advances in Modern Refractory Castables , 2004 .

[12]  R. Iler Adsorption of Colloidal Silica on Alumina and of Colloidal Alumina on Silica , 1964 .

[13]  Su-Jien Lin,et al.  Thermal characteristics of Al2O3–MgO and Al2O3–spinel castables for steel ladles , 2002 .

[14]  Swapan Das,et al.  Effect of silica sol of different routes on the properties of low cement castables , 2003 .

[15]  L. Gauckler,et al.  Influence of the Dispersant Structure on Properties of Electrostatically Stabilized Aqueous Alumina , 1997 .

[16]  M. Mahapatra,et al.  Easy-to-use mullite and spinel sols as bonding agents in a high-alumina based ultra low cement castable , 2002 .

[17]  Subrata Banerjee Monolithic Refractories: A Comprehensive Handbook , 1998 .

[18]  V. Pandolfelli,et al.  Effect of dispersants, fine powders on aluminum-containing refractory castables , 2004 .

[19]  A. Luz,et al.  Sintering Effect of Al and a Boron Source in High-Alumina Nano-Bonded Refractory Castables , 2015, Interceram - International Ceramic Review.

[20]  C. Pagliosa,et al.  Boron sources as sintering additives for alumina-based refractory castables , 2017 .

[21]  S. Tamura,et al.  Development of MgO‐C Nano‐Tech Refractories of 0% Graphite Content (Nano‐Tech Refractories‐12) , 2014 .

[22]  A. Luz,et al.  Mullite-based refractory castable engineering for the petrochemical industry , 2013 .

[23]  J. Lewis Colloidal Processing of Ceramics , 2004 .

[24]  V. Pandolfelli,et al.  Novel rheometer for refractory castables , 2000 .

[25]  S. Banerjee Recent developments in monolithic refractories , 1998 .

[26]  V. Pandolfelli,et al.  Refractory castables based on colloidal silica and hydratable alumina , 2007 .

[27]  V. Pandolfelli,et al.  Nano-bonded refractory castables , 2013 .

[28]  R. Torrecillas,et al.  Effect of spinel content on slag attack resistance of high alumina refractory castables , 2007 .

[29]  V. Pandolfelli,et al.  Citric acid role and its migration effects in nano-bonded refractory castables , 2014 .

[30]  S. Zhang,et al.  Castable refractory concretes , 2001 .

[31]  S. H. Badiee,et al.  NON-CemeNt refraCtOry CaStableS CONtaiNiNg NaNO-SiliCa : PerfOrmaNCe , miCrOStruCture , PrOPertieS , 2009 .

[32]  H. Schneider,et al.  Boron mullite: Formation and basic characterization , 2012 .

[33]  A. Singh,et al.  Nano mullite bonded refractory castable composition for high temperature applications , 2016 .

[34]  Masato Tanaka,et al.  Effect of the Carbon Nanofiber Addition on the Mechanical Properties of MgO-C Brick (Special Edition for UNITECR 2011) , 2011 .

[35]  V. Pandolfelli,et al.  Citric acid as anti-hydration additive for magnesia containing refractory castables , 2011 .

[36]  V. Pandolfelli,et al.  Advanced Boron-Containing Al2O3–MgO Refractory Castables , 2011 .

[37]  V. Pandolfelli,et al.  From Macro to Nanomagnesia: Designing the in situ Spinel Expansion , 2008 .

[38]  L. Gauckler,et al.  Citric Acid—A Dispersant for Aqueous Alumina Suspensions , 1996 .

[39]  A. Luz,et al.  Rheological performance of high alumina nano-bonded refractory castables containing carboxylic acids as additives , 2015 .

[40]  S. H. Badiee THE EFFECT OF NANO-TITANIA ADDITION ON THE PROPERTIES OF HIGH-ALUMINA LOW-CEMENT SELF-FLOWING REFRACTORY CASTABLES , 2011 .

[41]  Lei Zhao,et al.  Strengthening mechanism of graphene oxide nanosheets for Al2O3–C refractories , 2014 .

[42]  C. Gault,et al.  Microstructural changes and evolutions of elastic properties versus temperature of alumina and alumina–magnesia refractory castables , 2008 .

[43]  O. M. Lapinska,et al.  Bonite – a New Raw Material Alternative for Refractory Innovations , 2014 .

[44]  Yaxiong Li,et al.  Matrix structure evolution and thermo-mechanical properties of carbon fiber-reinforced Al{sub 2}O{sub 3}-SiC-C castable composites , 2015 .

[45]  A. Daghighi,et al.  THE EFFECT OF NANO-SIZE ADDITIVES ON THE ELECTRICAL CONDUCTIVITY OF MATRIX SUSPENSION AND PROPERTIES OF SELF-FLOWING LOW-CEMENT HIGH ALUMINA REFRACTORY CASTABLES , 2010 .

[46]  E. Ewais Carbon based refractories , 2004 .

[47]  M. F. Gazulla,et al.  Physico-chemical characterisation of silicon carbide refractories , 2006 .

[48]  E. Karamian,et al.  The influence of Al2O3 nanoparticles addition on the microstructure and properties of bauxite self–flowing low-cement castables , 2017 .

[49]  T. M. Souza,et al.  Effect of Al4SiC4 on the Al2O3SiCSiO2C refractory castables performance , 2012 .

[50]  Yawei Li,et al.  Enhanced mechanical performance of Al 2 O 3 -C refractories with nano carbon black and in-situ formed multi-walled carbon nanotubes (MWCNTs) , 2016 .

[51]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[52]  D. Xie,et al.  The Characteristics of Silica-Sol Combining Refractories , 2011 .

[53]  A. Luz,et al.  High‐Alumina Boron‐Containing Refractory Castables , 2014 .

[54]  André R. Studart,et al.  Rheology of concentrated suspensions containing weakly attractive alumina nanoparticles , 2006 .

[55]  V. Pandolfelli,et al.  Drying behavior of hydratable alumina-bonded refractory castables , 2004 .

[56]  Wolfgang M. Sigmund,et al.  Novel Powder-Processing Methods for Advanced Ceramics , 2004 .

[57]  S. Mukhopadhyay,et al.  Spinel‐Coated Graphite for Carbon Containing Refractory Castables , 2009 .

[58]  V. Pandolfelli,et al.  Tailoring the Microstructure of Cement‐Bonded Alumina–Magnesia Refractory Castables , 2010 .

[59]  K. Sobolev,et al.  Effect of nano-YSZ and nano-ZrO2 additions on the strength and toughness behavior of self-flowing alumina castables , 2016 .

[60]  V. Pandolfelli,et al.  Workability and setting parameters evaluation of colloidal silica bonded refractory suspensions , 2008 .

[61]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[62]  V. Pandolfelli,et al.  Processing of zero-cement self-flow alumina castables , 1998 .

[63]  E. Fujii,et al.  Effect of Al2O3 Raw Materials on Fluidity of Al2O3-Coated Graphite Powder Slurry , 2001 .

[64]  S. Ghosh,et al.  Influence of gel-derived nanocrystalline spinel in a high alumina castable: Part 1 , 2005 .

[65]  P. Pal,et al.  Influence of gel-derived nanocrystalline spinel in a high alumina castable: Part 2 , 2007 .

[66]  A. Daghighi,et al.  Microstructure and phase evolution of alumina–spinel self-flowing refractory castables containing nano-alumina particles , 2011 .

[67]  M. Bahrevar,et al.  The effect of deflocculants on the self-flow characteristics of ultra low-cement castables in Al2O3–SiC–C system , 2005 .

[68]  A. Buhr,et al.  Alkali- and CO-resistance of dense calcium hexaluminate Bonite , 2005 .

[69]  V. Pandolfelli,et al.  Hot-erosion of nano-bonded refractory castables for petrochemical industries , 2013 .

[70]  A. Luz,et al.  Thermodynamic evaluation of SiC oxidation in Al2O3–MgAl2O4–SiC–C refractory castables , 2010 .

[71]  F. Golestani-Fard,et al.  Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO–C refractories matrix , 2009 .

[72]  L. Gauckler,et al.  Selection of dispersants for high-alumina zero-cement refractory castables , 2003 .

[73]  R. Sarkar,et al.  Nano carbon containing MgO-C refractory: Effect of graphite content , 2012 .

[74]  Y. Ko Role of spinel composition in the slag resistance of Al2O3–spinel and Al2O3–MgO castables , 2002 .

[75]  Jingkun Yu,et al.  Improvement in flowability, oxidation resistance and water wettability of graphite powders by TiO2 coating , 1996 .

[76]  V. Pandolfelli,et al.  Spinel-containing alumina-based refractory castables , 2011 .

[77]  V. Pandolfelli,et al.  Nano-Bonded Wide Temperature Range Designed Refractory Castables , 2012 .

[78]  T. Chotard,et al.  Investigations of SiC aggregates oxidation: Influence on SiC castables refractories life time at high temperature , 2012 .

[79]  Zhou Ningsheng Advances in Modern Refractory Castables , 2004 .

[80]  V. Pandolfelli,et al.  Drying Stages during the Heating of High-Alumina, Ultra-Low-Cement Refractory Castables , 2003 .

[81]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[82]  Soumya Ghosh,et al.  Microstructures of refractory castables prepared with sol–gel additives , 2003 .

[83]  Shaowei Zhang,et al.  Molten Salt Synthesis and Characterization of Titanium Carbide-Coated Graphite Flakes for Refractory Castable Applications , 2011 .

[84]  R. Sarkar,et al.  Effect of spinel content on the properties of Al2O3–SiC–C based trough castable , 2016 .

[85]  Liang Yonghe,et al.  Pore evolution and its effect on slag resistance of Al2O3–SiC–C castables , 2013 .

[86]  Dexin Yang,et al.  Influence of β-Sialon/Ti(C, N) Powders on the Corrosion and Oxidation Resistance of Zero-Cement Al2O3-SiC-C Refractory Castables , 2015 .

[87]  A. Garbers-Craig Presidential Address: How cool are refractory materials? , 2008 .

[88]  J. Macháček,et al.  ON THE HIGH TEMPERATURE BENDING STRENGTH OF CASTABLES , 2012 .

[89]  W. E. Lee,et al.  Corrosion of high alumina and near stoichiometric spinels in iron-containing silicate slags , 2003 .

[90]  M. Reza,et al.  BEHAVIOUR OF ALUMINA-SPINEL SELF-FLOWING CASTABLES WITH NANO-ALUMINA PARTICLES ADDITION , 2009 .

[91]  Ya-wei Li,et al.  Microstructure and Mechanical Properties of Al 2 O 3 -C Refractories Using Carbon Black and Multi- Walled Carbon Nanotubes as Carbon Sources , 2015 .

[92]  Ya-wei Li,et al.  Microstructure and mechanical properties of multi-walled carbon nanotubes containing Al2O3–C refractories with addition of polycarbosilane , 2013 .

[93]  A. Luz,et al.  Developing nano-bonded refractory castables with enhanced green mechanical properties , 2015 .

[94]  R. Cahn,et al.  Materials science and engineering , 2023, Nature.

[95]  V. Pandolfelli,et al.  Permeability of High-Alumina Refractory Castables Based on Various Hydraulic Binders , 2002 .

[96]  André R Studart,et al.  Colloidal stabilization of nanoparticles in concentrated suspensions. , 2007, Langmuir : the ACS journal of surfaces and colloids.