The electron diffusion coefficient in energy in bounded collisional plasmas
暂无分享,去创建一个
[1] L. Tsendin,et al. Nonmonotonic spatial profiles of excitation rates in bounded plasmas caused by effects of EDF nonlocality , 2006, IEEE Transactions on Plasma Science.
[2] O. Polomarov,et al. Revisiting the anomalous RF field penetration into a warm plasma , 2005, IEEE Transactions on Plasma Science.
[3] L. Tsendin,et al. Paradoxical nonmonotonic behavior of excitation-rate spatial profiles in bounded plasmas. , 2005, Physical review letters.
[4] O. Polomarov,et al. Landau damping and anomalous skin effect in low-pressure gas discharges: self-consistent treatment of collisionless heating , 2004 .
[5] I. Kaganovich. Anomalous capacitive sheath with deep radio-frequency electric-field penetration. , 2002, Physical review letters.
[6] V. Kolobov,et al. Optical Characterization of RF Inductively Coupled Plasmas , 2002 .
[7] R. Winkler,et al. DC column plasma kinetics in a longitudinal magnetic field , 2001 .
[8] Ts Paunska,et al. Guided-wave-produced plasmas , 2000 .
[9] L. Tsendin,et al. Formation mechanisms of radial electron fluxes in a positive column. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[10] I. Kaganovich. Effects of Collisions and Particle Trapping on Collisionless Heating , 1999 .
[11] I. Kaganovich,et al. Fast modelling of low-pressure radio-frequency collisional capacitively coupled discharge and investigation of the formation of a non-Maxwellian electron distribution function , 1998 .
[12] Michael A. Lieberman,et al. From Fermi acceleration to collisionless discharge heating , 1998 .
[13] C. M. Ferreira,et al. Self-contained solution to the spatially inhomogeneous electron Boltzmann equation in a cylindrical plasma positive column , 1997 .
[14] D. Uhrlandt,et al. Radially inhomogeneous electron kinetics in the DC column plasma , 1996 .
[15] L. Mahoney,et al. Electron‐density and energy distributions in a planar inductively coupled discharge , 1994 .
[16] Kortshagen. Experimental evidence on the nonlocality of the electron distribution function. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[17] U. Kortshagen. A non-local kinetic model applied to microwave produced plasmas in cylindrical geometry , 1993 .
[18] Kolobov,et al. Analytic model of the cathode region of a short glow discharge in light gases. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[19] I. Kaganovich,et al. The space-time-averaging procedure and modeling of the RF discharge II. Model of collisional low-pressure RF discharge , 1992 .
[20] Godyak,et al. Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz. , 1990, Physical review letters.
[21] Michael A. Lieberman,et al. Analytical solution for capacitive RF sheath , 1988 .
[22] D. A. Usikov,et al. Nonlinear Physics: From the Pendulum to Turbulence and Chaos , 1988 .
[23] Valery Godyak,et al. Soviet radio frequency discharge research , 1986 .
[24] A. Gurevich,et al. Multiple acceleration of electrons in plasma resonance , 1983 .
[25] H. Deutsch,et al. Anomales Verhalten des Säulenplasmas von Edelgasentladungen im longitudinalen Magnetfeld , 1976 .
[26] K. Wiesemann. Der Einfluß einer Blende auf die Verteilungsfunktion der Elektronen in einem Gasentladungsplasma. II Die Messung der Verteilungsfunktion der Elektronen in der Umgebung einer Blende , 1969 .
[27] W. Allis. Motions of Ions and Electrons , 1956 .
[28] I. Bernstein,et al. Electron Energy Distributions in Stationary Discharges , 1954 .