The electron diffusion coefficient in energy in bounded collisional plasmas

The electron energies in typical gas discharge plasmas do not exceed significantly the first ionization potential. This being the case, the momentum relaxation in collisions with neutrals is significantly faster than the energy relaxation due to collisions. It follows that the main part of the electron distribution function (EDF) is isotropic. So the interaction of an electron with an electric field is predominantly stochastic random walk process and can be described by a diffusion coefficient in energy Depsiv. Both collisional and stochastic heating mechanisms can be incorporated in it. By the proper choice of variables, the electron Boltzmann equation can be reduced to the standard diffusion one, both in space and in energy. This approach is very efficient in solution of the problems of the electron kinetics in bounded nonuniform plasmas. Some paradoxical effects, such as the formation of a cold electron population in discharges with peripheral energy input, and nonmonotonic radial profiles of the excitation rates, are explained within this framework. The expressions for Depsiv in different discharges are presented. The history of the EDF nonlocality concept is discussed for stationary gas discharges

[1]  L. Tsendin,et al.  Nonmonotonic spatial profiles of excitation rates in bounded plasmas caused by effects of EDF nonlocality , 2006, IEEE Transactions on Plasma Science.

[2]  O. Polomarov,et al.  Revisiting the anomalous RF field penetration into a warm plasma , 2005, IEEE Transactions on Plasma Science.

[3]  L. Tsendin,et al.  Paradoxical nonmonotonic behavior of excitation-rate spatial profiles in bounded plasmas. , 2005, Physical review letters.

[4]  O. Polomarov,et al.  Landau damping and anomalous skin effect in low-pressure gas discharges: self-consistent treatment of collisionless heating , 2004 .

[5]  I. Kaganovich Anomalous capacitive sheath with deep radio-frequency electric-field penetration. , 2002, Physical review letters.

[6]  V. Kolobov,et al.  Optical Characterization of RF Inductively Coupled Plasmas , 2002 .

[7]  R. Winkler,et al.  DC column plasma kinetics in a longitudinal magnetic field , 2001 .

[8]  Ts Paunska,et al.  Guided-wave-produced plasmas , 2000 .

[9]  L. Tsendin,et al.  Formation mechanisms of radial electron fluxes in a positive column. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  I. Kaganovich Effects of Collisions and Particle Trapping on Collisionless Heating , 1999 .

[11]  I. Kaganovich,et al.  Fast modelling of low-pressure radio-frequency collisional capacitively coupled discharge and investigation of the formation of a non-Maxwellian electron distribution function , 1998 .

[12]  Michael A. Lieberman,et al.  From Fermi acceleration to collisionless discharge heating , 1998 .

[13]  C. M. Ferreira,et al.  Self-contained solution to the spatially inhomogeneous electron Boltzmann equation in a cylindrical plasma positive column , 1997 .

[14]  D. Uhrlandt,et al.  Radially inhomogeneous electron kinetics in the DC column plasma , 1996 .

[15]  L. Mahoney,et al.  Electron‐density and energy distributions in a planar inductively coupled discharge , 1994 .

[16]  Kortshagen Experimental evidence on the nonlocality of the electron distribution function. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  U. Kortshagen A non-local kinetic model applied to microwave produced plasmas in cylindrical geometry , 1993 .

[18]  Kolobov,et al.  Analytic model of the cathode region of a short glow discharge in light gases. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[19]  I. Kaganovich,et al.  The space-time-averaging procedure and modeling of the RF discharge II. Model of collisional low-pressure RF discharge , 1992 .

[20]  Godyak,et al.  Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz. , 1990, Physical review letters.

[21]  Michael A. Lieberman,et al.  Analytical solution for capacitive RF sheath , 1988 .

[22]  D. A. Usikov,et al.  Nonlinear Physics: From the Pendulum to Turbulence and Chaos , 1988 .

[23]  Valery Godyak,et al.  Soviet radio frequency discharge research , 1986 .

[24]  A. Gurevich,et al.  Multiple acceleration of electrons in plasma resonance , 1983 .

[25]  H. Deutsch,et al.  Anomales Verhalten des Säulenplasmas von Edelgasentladungen im longitudinalen Magnetfeld , 1976 .

[26]  K. Wiesemann Der Einfluß einer Blende auf die Verteilungsfunktion der Elektronen in einem Gasentladungsplasma. II Die Messung der Verteilungsfunktion der Elektronen in der Umgebung einer Blende , 1969 .

[27]  W. Allis Motions of Ions and Electrons , 1956 .

[28]  I. Bernstein,et al.  Electron Energy Distributions in Stationary Discharges , 1954 .