Image edge enhancement using Airy spiral phase filter.

The isotropic and anisotropic image edge enhancements by employing Airy spiral phase filters are proposed and demonstrated. The coherent spread functions of the image systems are derived from transmittance functions of their corresponding filters. In the isotropic method, the distributions of the coherent spread function with the radius of the main ring ρ0 and the scaled parameter w0 are numerically analyzed. It is found that the width of the main lobe determining the resolution decreases with the increased ρ0, and the amplitudes of the side lobes connecting with the contrast fluctuate with w0. Compared with the existing spiral phase filters, higher contrast and resolution can be achieved by adjusting the two parameters in the Airy spiral phase filter. Moreover, an off-axis Airy spiral phase filter by controlling the center position (ρ0,ϕ1) is designed and employed to implement anisotropic edge enhancement. In the experiments, two methods of image edge enhancement have been verified by using the amplitude-contrast and phase-contrast objects.

[1]  Lixiang Chen,et al.  Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters , 2015, Scientific Reports.

[2]  D. Christodoulides,et al.  Accelerating finite energy Airy beams. , 2007, Optics letters.

[3]  Demetrios N. Christodoulides,et al.  Observation of accelerating Airy beams. , 2007 .

[4]  Jianping Ding,et al.  Radial Hilbert transform with Laguerre-Gaussian spatial filters. , 2006, Optics letters.

[5]  S. Bernet,et al.  Shadow effects in spiral phase contrast microscopy. , 2005, Physical review letters.

[6]  G. V. Uspleniev,et al.  The Phase Rotor Filter , 1992 .

[7]  P. Senthilkumaran,et al.  Selective edge enhancement using shifted anisotropic vortex filter , 2013 .

[8]  P. Senthilkumaran,et al.  Directional edge enhancement using superposed vortex filter , 2014 .

[9]  Miroslav Kolesik,et al.  Curved Plasma Channel Generation Using Ultraintense Airy Beams , 2009, Science.

[10]  Laura Waller,et al.  Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope , 2014, Journal of biomedical optics.

[11]  Karlton Crabtree,et al.  Optical processing with vortex-producing lenses. , 2004, Applied optics.

[12]  F. Pfeiffer,et al.  In-vivo dark-field and phase-contrast x-ray imaging , 2013, Scientific Reports.

[13]  Jianpei Xia,et al.  Vectorial optical vortex filtering for edge enhancement , 2016 .

[14]  J Campos,et al.  Image processing with the radial Hilbert transform: theory and experiments. , 2000, Optics letters.

[15]  Peng Zhang,et al.  Trapping and guiding microparticles with morphing autofocusing Airy beams. , 2011, Optics letters.

[16]  Jeffrey A. Davis,et al.  Analysis of fractional vortex beams using a vortex grating spectrum analyzer , 2010 .

[17]  Jörg Baumgartl,et al.  Optically mediated particle clearing using Airy wavepackets , 2008 .

[18]  D. Christodoulides,et al.  Airy plasmon: a nondiffracting surface wave. , 2010, Optics letters.

[19]  Michael V Berry,et al.  Nonspreading wave packets , 1979 .

[20]  D. Mawet,et al.  Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph. , 2011, Optics letters.

[21]  G. Pedrini,et al.  Spiral phase filtering and orientation-selective edge detection/enhancement. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Siwei Zhu,et al.  Image edge enhancement in optical microscopy with a Bessel-like amplitude modulated spiral phase filter , 2011 .

[23]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[24]  Stelios Tzortzakis,et al.  Spatiotemporal airy light bullets in the linear and nonlinear regimes. , 2010, Physical review letters.

[25]  Wolfgang Osten,et al.  Phase contrast enhancement in microscopy using spiral phase filtering , 2010 .