Manifold Learning and Ranking

A prominent theme of this book is the spatial analysis of networks and data independent of an embedding in an ambient space. The topology and metric of the network/complex have been sufficient to define the domain upon which we may perform data analysis. However, an intrinsic metric defined on a network may be interpreted as the metric that would have been obtained if the network had been embedded into an ambient space equipped with its own metric. Consequently, it is possible to calculate an embedding map for which the induced metric approximates the intrinsic metric defined on the network. The calculation of such embeddings by manifold learning techniques is one way in which the structure of the network may be examined and visualized. A different method of examining the structure of a network is to calculate an importance ranking for each node. In contrast to the majority of this book, the ranking algorithms are generally used to examine the structure of directed graphs.

[1]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[2]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[3]  James H. Fowler,et al.  Abstract Available online at www.sciencedirect.com Social Networks 30 (2008) 16–30 The authority of Supreme Court precedent , 2022 .

[4]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[5]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[6]  Edwin R. Hancock,et al.  Commute Times, Discrete Green's Functions and Graph Matching , 2005, ICIAP.

[7]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[8]  Ayman Farahat,et al.  Authority Rankings from HITS, PageRank, and SALSA: Existence, Uniqueness, and Effect of Initialization , 2005, SIAM J. Sci. Comput..

[9]  David L. Webb,et al.  One cannot hear the shape of a drum , 1992, math/9207215.

[10]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[11]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[12]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[14]  David F. Gleich,et al.  Models and algorithms for pagerank sensitivity , 2009 .

[15]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[16]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[17]  François Fouss,et al.  The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering , 2004, ECML.

[18]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[19]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[20]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[21]  F. Chung Laplacians and the Cheeger Inequality for Directed Graphs , 2005 .

[22]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[23]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[24]  Timo Kohlberger,et al.  Organ Segmentation with Level Sets Using Local Shape and Appearance Priors , 2009, MICCAI.

[25]  B. McKay,et al.  Constructing cospectral graphs , 1982 .

[26]  M. Fréchet Sur La Definition Axiomatique D'Une Classe D'Espaces Vectoriels Distancies Applicables Vectoriellement Sur L'Espace de Hilbert , 1935 .

[27]  Christopher J. C. Burges,et al.  Geometric Methods for Feature Extraction and Dimensional Reduction , 2005 .

[28]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[29]  J. Fowler,et al.  Network Analysis and the Law: Measuring the Legal Importance of Precedents at the U.S. Supreme Court , 2007, Political Analysis.

[30]  Yuan Yao,et al.  Statistical ranking and combinatorial Hodge theory , 2008, Math. Program..

[31]  David G. Stork,et al.  Pattern Classification , 1973 .

[32]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[34]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[35]  Willem H. Haemers,et al.  Spectral Characterizations of Some Distance-Regular Graphs , 2002 .

[36]  Edwin R. Hancock,et al.  Image Segmentation using Commute Times , 2005, BMVC.

[37]  David F. Gleich,et al.  Using Polynomial Chaos to Compute the Influence of Multiple Random Surfers in the PageRank Model , 2007, WAW.

[38]  Pavel Brazdil,et al.  Proceedings of the European Conference on Machine Learning , 1993 .