A Generalized Class of Hard Thresholding Algorithms for Sparse Signal Recovery

We introduce a whole family of hard thresholding algorithms for the recovery of sparse signals \({\mathbf {x}}\in {\mathbb C}^N\) from a limited number of linear measurements \({\mathbf y}= \mathbf{A}{\mathbf {x}}\in {\mathbb C}^m\), with \(m \ll N\). Our results generalize previous ones on hard thresholding pursuit algorithms. We show that uniform recovery of all \(s\)-sparse vectors \({\mathbf {x}}\) can be achieved under a certain restricted isometry condition. While these conditions might be unrealistic in some cases, it is shown that with high probability, our algorithms select a correct set of indices at each iteration, as long as the active support is smaller than the actual support of the vector to be recovered, with a proviso on the shape of the vector. Our theoretical findings are illustrated by numerical examples.

[1]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[2]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[3]  ZhangYin,et al.  Alternating Direction Algorithms for $\ell_1$-Problems in Compressive Sensing , 2011 .

[4]  S. Foucart,et al.  Hard thresholding pursuit algorithms: Number of iterations ☆ , 2016 .

[5]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[6]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[7]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[8]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[9]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[10]  S. Foucart Sparse Recovery Algorithms: Sufficient Conditions in Terms of RestrictedIsometry Constants , 2012 .

[11]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[12]  L. Schumaker,et al.  Approximation theory XIII : San Antonio 2010 , 2012 .

[13]  David P. Wipf,et al.  Iterative Reweighted 1 and 2 Methods for Finding Sparse Solutions , 2010, IEEE J. Sel. Top. Signal Process..

[14]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[15]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[16]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[17]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.