Convergent evolution: the need to be explicit.

[1]  G. Farber An α/β-barrel full of evolutionary trouble , 1993 .

[2]  C. Stewart Structural convergence and horizontal transfer? , 1993, Current Biology.

[3]  N. Rawlings,et al.  Evolutionary families of peptidases. , 1993, The Biochemical journal.

[4]  W A Hendrickson,et al.  Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. , 1992, Science.

[5]  V. Colizzi,et al.  Convergent evolution in the homology between HIV gp160 and HLA class II molecules. , 1992, AIDS research and human retroviruses.

[6]  Joel L. Sussman,et al.  The α/β hydrolase fold , 1992 .

[7]  G. Schulz Binding of nucleotides by proteins , 1992, Current Biology.

[8]  C. Brändén,et al.  The TIM barrel—the most frequently occurring folding motif in proteins , 1991 .

[9]  M Wilmanns,et al.  Structural conservation in parallel beta/alpha-barrel enzymes that catalyze three sequential reactions in the pathway of tryptophan biosynthesis. , 1991, Biochemistry.

[10]  J. Zheng,et al.  Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. , 1991, Science.

[11]  J. Schrag,et al.  Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum , 1991, Nature.

[12]  J. Beintema The primary structure of langur (Presbytis entellus) pancreatic ribonuclease: adaptive features in digestive enzymes in mammals. , 1990, Molecular biology and evolution.

[13]  R F Doolittle,et al.  Progressive alignment and phylogenetic tree construction of protein sequences. , 1990, Methods in enzymology.

[14]  K. Reid,et al.  Properdin, the terminal complement components, thrombospondin and the circumsporozoite protein of malaria parasites contain similar sequence motifs , 1988, Nature.

[15]  C. Newbold,et al.  A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite , 1988, Nature.

[16]  R. Damian Molecular mimicry revisited. , 1987, Parasitology today.

[17]  Allan C. Wilson,et al.  Adaptive evolution in the stomach lysozymes of foregut fermenters , 1987, Nature.

[18]  R. Doolittle Of urfs and orfs : a primer on how to analyze devised amino acid sequences , 1986 .

[19]  A. Wilson,et al.  Stomach lysozymes of ruminants. I. Distribution and catalytic properties. , 1984, The Journal of biological chemistry.

[20]  J. Kraut Serine proteases: structure and mechanism of catalysis. , 1977, Annual review of biochemistry.

[21]  R. Doolittle,et al.  Amino acid sequence studies on artiodactyl fibrinopeptides: II. Vicuna, elk, muntjak, pronghorn antelope, and water buffalo , 1967 .

[22]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[23]  R. Damian Molecular Mimicry: Antigen Sharing by Parasite and Host and Its Consequences , 1964, The American Naturalist.

[24]  R. Doolittle,et al.  The sequence of amino acids at the N-terminal end of bovine fibrinopeptide B. , 1963, Acta chemica Scandinavica.