Ecological Networks Across Environmental Gradients

Ecological networks have a long history in ecology, and a recent increase in network analyses across environmental gradients has revealed important changes in their structure, dynamics, and functioning. These changes can be broadly grouped according to three nonexclusive mechanisms: (a) changes in the species composition of the networks (driven by interaction patterns of invaders, nonrandom extinction of species according to their traits, or differences among species in population responses across gradients); (b) changes that alter interaction frequencies via changes in search efficiency (driven by altered habitat structure or metabolic rates) or changes in spatial and temporal overlap; and (c) changes to coevolutionary processes and patterns. Taking spatial and temporal processes into account can further elucidate network variation and improve predictions of network responses to environmental change. Emerging evidence links network structure to ecosystem functioning; however, scaling up to metanetworks o...

[1]  M. Castelo,et al.  Exposure to competitors influences parasitism decisions in ectoparasitoid fly larvae , 2015, Animal Behaviour.

[2]  Owen L. Petchey,et al.  Adaptive foraging and the rewiring of size-structured food webs following extinctions , 2011 .

[3]  Integration of exotic seeds into an Azorean seed dispersal network , 2013, Biological Invasions.

[4]  F. Moberg,et al.  Mobile Link Organisms and Ecosystem Functioning: Implications for Ecosystem Resilience and Management , 2003, Ecosystems.

[5]  Guadalupe Peralta,et al.  Non-random food-web assembly at habitat edges increases connectivity and functional redundancy. , 2017, Ecology.

[6]  Owen L. Petchey,et al.  Universal temperature and body-mass scaling of feeding rates , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  Dominique Gravel,et al.  Beyond species: why ecological interaction networks vary through space and time , 2014, bioRxiv.

[8]  Carsten F. Dormann,et al.  Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes , 2012, Current Biology.

[9]  L. Burkle,et al.  Minimal Effects of an Invasive Flowering Shrub on the Pollinator Community of Native Forbs , 2014, PloS one.

[10]  M. Piehler,et al.  Warming and Resource Availability Shift Food Web Structure and Metabolism , 2009, PLoS biology.

[11]  Jordi Bascompte,et al.  Non-random coextinctions in phylogenetically structured mutualistic networks , 2007, Nature.

[12]  Jordi Bascompte,et al.  Plant-Animal Mutualistic Networks: The Architecture of Biodiversity , 2007 .

[13]  J. Memmott,et al.  Functional group diversity increases with modularity in complex food webs , 2015, Nature Communications.

[14]  Guy Woodward,et al.  Drought alters the structure and functioning of complex food webs , 2013 .

[15]  Carsten F Dormann,et al.  Ecological networks are more sensitive to plant than to animal extinction under climate change , 2016, Nature Communications.

[16]  J. Morales,et al.  Functional heterogeneity in a plant–frugivore assemblage enhances seed dispersal resilience to habitat loss , 2013 .

[17]  K S McCann,et al.  The dynamics of spatially coupled food webs. , 2005, Ecology letters.

[18]  Carlos J. Melián,et al.  The nested assembly of plant–animal mutualistic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Thorsten Blenckner,et al.  Regime shifts in marine communities: a complex systems perspective on food web dynamics , 2016, Proceedings of the Royal Society B: Biological Sciences.

[20]  Owen T Lewis,et al.  Antagonistic interaction networks are structured independently of latitude and host guild , 2013, Ecology letters.

[21]  Cecilia Díaz-Castelazo,et al.  Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability , 2016, PeerJ.

[22]  Ignasi Bartomeus,et al.  Invasive plant integration into native plant–pollinator networks across Europe , 2009, Proceedings of the Royal Society B: Biological Sciences.

[23]  A. Ellis,et al.  Invariant antagonistic network structure despite high spatial and temporal turnover of interactions , 2017 .

[24]  Pedro Jordano,et al.  Sampling networks of ecological interactions , 2015, bioRxiv.

[25]  Owen L. Petchey,et al.  Impacts of Warming on the Structure and Functioning of Aquatic Communities: Individual- to Ecosystem-Level Responses , 2012 .

[26]  Alexandre Jousset,et al.  Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health , 2015, Nature Communications.

[27]  F. Altermatt,et al.  Bridging ecology and conservation: from ecological networks to ecosystem function , 2017 .

[28]  Guadalupe Peralta,et al.  Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries , 2016, Nature Communications.

[29]  E. Neuschulz,et al.  Constant properties of plant-frugivore networks despite fluctuations in fruit and bird communities in space and time. , 2013, Ecology.

[30]  Miguel Verdú,et al.  Ecological interactions are evolutionarily conserved across the entire tree of life , 2010, Nature.

[31]  Neo D. Martinez,et al.  Predicting invasion success in complex ecological networks , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  Rebecca E. Irwin,et al.  Beyond biomass: measuring the effects of community‐level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction , 2010 .

[33]  Specialization and phenological synchrony of plant-pollinator interactions along an altitudinal gradient. , 2014, The Journal of animal ecology.

[34]  A. Mougi,et al.  Diversity of Interaction Types and Ecological Community Stability , 2012, Science.

[35]  Juan M Morales,et al.  Invasive Mutualists Erode Native Pollination Webs , 2008, PLoS biology.

[36]  Jordi Bascompte,et al.  The architecture of mutualistic networks minimizes competition and increases biodiversity , 2009, Nature.

[37]  Benjamin Baiser,et al.  Connectance determines invasion success via trophic interactions in model food webs , 2010 .

[38]  G. Romero,et al.  Food web structure shaped by habitat size and climate across a latitudinal gradient. , 2016, Ecology.

[39]  J. Bascompte,et al.  Global change and species interactions in terrestrial ecosystems. , 2008, Ecology letters.

[40]  Sonia Kéfi,et al.  Describe, understand and predict: why do we need networks in ecology? , 2016 .

[41]  J. Memmott,et al.  Ecological meta-networks integrate spatial and temporal dynamics of plant - bumble bee interactions , 2014 .

[42]  J. Tylianakis,et al.  Genotype matching in a parasitoid–host genotypic food web: an approach for measuring effects of environmental change , 2013, Molecular ecology.

[43]  Owen T Lewis,et al.  Experimentally reducing species abundance indirectly affects food web structure and robustness , 2017, The Journal of animal ecology.

[44]  Jens M. Olesen,et al.  Ecological networks in motion: Micro- and macroscopic variability across scales , 2016 .

[45]  Luciano Cagnolo,et al.  Evaluating multiple determinants of the structure of plant-animal mutualistic networks. , 2009, Ecology.

[46]  Jordi Bascompte,et al.  Temporal dynamics in a pollination network. , 2008, Ecology.

[47]  Guadalupe Peralta Merging evolutionary history into species interaction networks , 2016 .

[48]  Werner Ulrich,et al.  Consumer-resource body-size relationships in natural food webs. , 2006, Ecology.

[49]  T. Tscharntke,et al.  Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies , 2007 .

[50]  D. Ackerly,et al.  Plant-pollinator interactions and the assembly of plant communities. , 2008, Trends in ecology & evolution.

[51]  Marco A. R. Mello,et al.  Invasive Africanized honeybees change the structure of native pollination networks in Brazil , 2012, Biological Invasions.

[52]  M. Nogales,et al.  What Determines the Temporal Changes of Species Degree and Strength in an Oceanic Island Plant-Disperser Network? , 2012, PloS one.

[53]  Pedro Jordano,et al.  Changes of a mutualistic network over time: reanalysis over a 10-year period. , 2010, Ecology.

[54]  I. Gauld Some factors affecting the composition of tropical ichneumonid faunas , 1987 .

[55]  J. Ramos,et al.  High Resilience of Seed Dispersal Webs Highlighted by the Experimental Removal of the Dominant Disperser , 2016, Current Biology.

[56]  H. Setälä,et al.  Species richness and food web structure of soil decomposer community as affected by the size of habitat fragment and habitat corridors , 2005 .

[57]  Ignasi Bartomeus,et al.  How exotic plants integrate into pollination networks , 2014, The Journal of ecology.

[58]  Carol M. Frost,et al.  Complementarity and redundancy of interactions enhance attack rates and spatial stability in host-parasitoid food webs. , 2014, Ecology.

[59]  R. Paine Road Maps of Interactions or Grist for Theoretical Development , 1988 .

[60]  Carsten Thies,et al.  Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates , 2012, Oecologia.

[61]  Jason M Tylianakis,et al.  Specialization and Rarity Predict Nonrandom Loss of Interactions from Mutualist Networks , 2012, Science.

[62]  Carlos J. Melián,et al.  The temporal dynamics of resource use by frugivorous birds: a network approach. , 2009, Ecology.

[63]  G. Woodward,et al.  Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems , 2011 .

[64]  R. Kitching,et al.  Changes in host-parasitoid food web structure with elevation. , 2015, The Journal of animal ecology.

[65]  Robert Planqué,et al.  Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? , 2009, Ecology letters.

[66]  Teja Tscharntke,et al.  Habitat modification alters the structure of tropical host–parasitoid food webs , 2007, Nature.

[67]  R. Kaartinen,et al.  High temporal consistency in quantitative food web structure in the face of extreme species turnover , 2012 .

[68]  Carsten F Dormann,et al.  Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient , 2011, Proceedings of the Royal Society B: Biological Sciences.

[69]  C. Margules,et al.  A SYNERGISTIC EFFECT PUTS RARE, SPECIALIZED SPECIES AT GREATER RISK OF EXTINCTION , 2004 .

[70]  Dominique Gravel,et al.  The dissimilarity of species interaction networks. , 2012, Ecology letters.

[71]  Phillip P. A. Staniczenko,et al.  Warming and nitrogen affect size structuring and density dependence in a host–parasitoid food web , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[72]  Rudolf P. Rohr,et al.  Does removal of invasives restore ecological networks? An experimental approach , 2015, Biological Invasions.

[73]  M. Loreau,et al.  Nontrophic Interactions, Biodiversity, and Ecosystem Functioning: An Interaction Web Model , 2007, The American Naturalist.

[74]  Xabier Irigoien,et al.  Scaling the metabolic balance of the oceans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Colin Fontaine,et al.  Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks , 2010, Science.

[76]  J. Tylianakis,et al.  Climate Change Disproportionately Increases Herbivore over Plant or Parasitoid Biomass , 2012, PloS one.

[77]  Ørjan Totland,et al.  How does climate warming affect plant-pollinator interactions? , 2009, Ecology letters.

[78]  P. Jordano,et al.  PAPER Functional relationships beyond species richness patterns: trait matching in plant-bird mutualisms across scales , 2014 .

[79]  P. Guimarães,et al.  Frugivores at higher risk of extinction are the key elements of a mutualistic network , 2014 .

[80]  Jan Hrček,et al.  What do molecular methods bring to host-parasitoid food webs? , 2015, Trends in parasitology.

[81]  Daniel B. Stouffer,et al.  Species’ roles in food webs show fidelity across a highly variable oak forest , 2015 .

[82]  I. Steffan‐Dewenter,et al.  Interactive effects of elevation, species richness and extreme climatic events on plant–pollinator networks , 2015, Global change biology.

[83]  Jordi Bascompte,et al.  A neutral‐niche theory of nestedness in mutualistic networks , 2008 .

[84]  N. Waser,et al.  Variable flowering phenology and pollinator use in a community suggest future phenological mismatch , 2014 .

[85]  Johan van de Koppel,et al.  Reconciling complexity with stability in naturally assembling food webs , 2007, Nature.

[86]  Joel E. Cohen,et al.  Food web patterns and their consequences , 1991, Nature.

[87]  Anders Nielsen,et al.  Conservation of species interaction networks , 2010 .

[88]  Owen L Petchey,et al.  Size, foraging, and food web structure , 2008, Proceedings of the National Academy of Sciences.

[89]  Jane Memmott,et al.  The impact of an alien plant on a native plant-pollinator network: an experimental approach. , 2007, Ecology letters.

[90]  Daniel García,et al.  Spatial networks of fleshy-fruited trees drive the flow of avian seed dispersal through a landscape , 2014 .

[91]  Luis J. Gilarranz,et al.  The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation. , 2016, Ecology letters.

[92]  Laura A Burkle,et al.  The future of plant-pollinator diversity: understanding interaction networks across time, space, and global change. , 2011, American journal of botany.

[93]  Neo D. Martinez,et al.  Network structure and biodiversity loss in food webs: robustness increases with connectance , 2002, Ecology Letters.

[94]  Judith L Bronstein,et al.  Interaction rewiring and the rapid turnover of plant-pollinator networks. , 2017, Ecology letters.

[95]  D. Wardle,et al.  Terrestrial Ecosystem Responses to Species Gains and Losses , 2011, Science.

[96]  Jochen Fründ,et al.  Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant - animal interactions , 2015 .

[97]  Michael J. O. Pocock,et al.  The Robustness and Restoration of a Network of Ecological Networks , 2012, Science.

[98]  Jane Memmott,et al.  Food webs: a ladder for picking strawberries or a practical tool for practical problems? , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[99]  Nicholas A. C. Marino,et al.  Predicted rainfall changes disrupt trophic interactions in a tropical aquatic ecosystem. , 2016, Ecology.

[100]  C. Nunn,et al.  Centrality in primate–parasite networks reveals the potential for the transmission of emerging infectious diseases to humans , 2013, Proceedings of the National Academy of Sciences.

[101]  Neal M. Williams,et al.  Species abundance and asymmetric interaction strength in ecological networks , 2007 .

[102]  P. Jordano,et al.  Morphology predicts species' functional roles and their degree of specialization in plant–frugivore interactions , 2016, Proceedings of the Royal Society B: Biological Sciences.

[103]  U. Sommer,et al.  Global warming benefits the small in aquatic ecosystems , 2009, Proceedings of the National Academy of Sciences.

[104]  É. Thébault,et al.  Structure–stability relationships in networks combining mutualistic and antagonistic interactions , 2014 .

[105]  Ingolf Kühn,et al.  Climate change can cause spatial mismatch of trophically interacting species. , 2008, Ecology.

[106]  S. Gieseg,et al.  Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. , 2012, Ecology letters.

[107]  B. Brosi Pollinator specialization: from the individual to the community. , 2016, The New phytologist.

[108]  J. Tylianakis,et al.  Plant-mediated and nonadditive effects of two global change drivers on an insect herbivore community. , 2012, Ecology.

[109]  Stefano Allesina,et al.  The dimensionality of ecological networks. , 2013, Ecology letters.

[110]  Marta Sales-Pardo,et al.  Evolutionary Conservation of Species’ Roles in Food Webs , 2012, Science.

[111]  Carsten F. Dormann,et al.  Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations , 2017 .

[112]  K. Böhning‐Gaese,et al.  At a loss for birds: insularity increases asymmetry in seed-dispersal networks. , 2014 .

[113]  Jane Memmott,et al.  Tolerance of pollination networks to species extinctions , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[114]  K. Böhning‐Gaese,et al.  Functional importance of avian seed dispersers changes in response to human-induced forest edges in tropical seed-dispersal networks , 2014, Oecologia.

[115]  M. Ledger,et al.  The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient. , 2005, Environmental pollution.

[116]  Réka Albert,et al.  Transience and constancy of interactions in a plant‐frugivore network , 2013 .

[117]  Dominique Gravel,et al.  A common framework for identifying linkage rules across different types of interactions , 2015, bioRxiv.

[118]  Pedro Jordano,et al.  Evolution and Coevolution in Mutualistic Networks , 2022 .

[119]  Björn C. Rall,et al.  Warming up the system: higher predator feeding rates but lower energetic efficiencies , 2011 .

[120]  Ignasi Bartomeus,et al.  Linking species functional roles to their network roles. , 2016, Ecology letters.

[121]  Rebecca J. Morris,et al.  Food web structure changes with elevation but not rainforest stratum , 2015 .

[122]  J. Casselman,et al.  Stable isotope evidence for the food web consequences of species invasions in lakes , 1999, Nature.

[123]  J. Montoya,et al.  Food web complexity and higher‐level ecosystem services , 2003 .

[124]  Jean-Pierre Gabriel,et al.  Complexity in quantitative food webs. , 2009, Ecology.

[125]  Jason M. Tylianakis,et al.  Species roles in plant–pollinator communities are conserved across native and alien ranges , 2016 .

[126]  K. Winemiller Spatial and Temporal Variation in Tropical Fish Trophic Networks , 1990 .

[127]  Etienne Laliberté,et al.  Deforestation homogenizes tropical parasitoid-host networks. , 2010, Ecology.

[128]  Carol M. Frost,et al.  Phylogenetic diversity and co-evolutionary signals among trophic levels change across a habitat edge. , 2015, The Journal of animal ecology.

[129]  M. Aizen,et al.  Evaluating the effects of pollinator-mediated interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. , 2016, Ecology letters.

[130]  M. V. Cove,et al.  A primer on the history of food web ecology: Fundamental contributions of fourteen researchers , 2015 .

[131]  Dominique Gravel,et al.  Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. , 2013, Ecology letters.

[132]  Amedeo Caflisch,et al.  The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. , 2010, Ecology letters.

[133]  J. Bosch,et al.  Plant-pollinator networks: adding the pollinator's perspective. , 2009, Ecology letters.

[134]  K. Hopper,et al.  Is parasitoid acceptance of different host species dynamic , 2013 .

[135]  Samraat Pawar,et al.  Dimensionality of consumer search space drives trophic interaction strengths , 2012, Nature.

[136]  M. Aschan,et al.  Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists , 2015, Proceedings of the Royal Society B: Biological Sciences.

[137]  Peter J. Morin,et al.  Environmental warming alters food-web structure and ecosystem function , 1999, Nature.

[138]  K. Shea,et al.  Patterns of introduced species interactions affect multiple aspects of network structure in plant-pollinator communities. , 2014 .

[139]  Jane Memmott,et al.  Global warming and the disruption of plant-pollinator interactions. , 2007, Ecology letters.

[140]  Jeff Ollerton,et al.  Year‐to‐year variation in the topology of a plant–pollinator interaction network , 2008 .

[141]  Guy Woodward,et al.  Body size in ecological networks. , 2005, Trends in ecology & evolution.

[142]  L. Burkle,et al.  Shifts in pollinator composition and behavior cause slow interaction accumulation with area in plant-pollinator networks. , 2012, Ecology.

[143]  Patrick L. Thompson,et al.  Warming modifies trophic cascades and eutrophication in experimental freshwater communities. , 2012, Ecology.

[144]  G. Valladares,et al.  Habitat Fragmentation and Species Loss across Three Interacting Trophic Levels: Effects of Life‐History and Food‐Web Traits , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[145]  Catherine Crea,et al.  A new model for ecological networks using species‐level traits , 2016 .

[146]  G. Woodward,et al.  Long‐term variation in the littoral food web of an acidified mountain lake , 2010 .

[147]  Jordi Bascompte,et al.  Diversity in a complex ecological network with two interaction types , 2009 .

[148]  G. Valladares,et al.  Forest fragmentation leads to food web contraction , 2012 .

[149]  Louis-Félix Bersier,et al.  QUANTITATIVE DESCRIPTORS OF FOOD-WEB MATRICES , 2002 .

[150]  Jason M. Tylianakis,et al.  Effects of global environmental changes on parasitoid–host food webs and biological control , 2014 .

[151]  I. Bartomeus,et al.  Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks , 2011, Proceedings of the Royal Society B: Biological Sciences.

[152]  Paul J. CaraDonna,et al.  Phenological overlap of interacting species in a changing climate: an assessment of available approaches , 2013, Ecology and evolution.

[153]  Stefano Allesina,et al.  The ghost of nestedness in ecological networks , 2013, Nature Communications.

[154]  Ignasi Bartomeus,et al.  Contrasting effects of invasive plants in plant–pollinator networks , 2008, Oecologia.

[155]  Dominique Gravel,et al.  Inferring food web structure from predator–prey body size relationships , 2013 .

[156]  Neo D. Martinez,et al.  Food webs: reconciling the structure and function of biodiversity. , 2012, Trends in ecology & evolution.

[157]  Guy Woodward,et al.  Biodiversity, species interactions and ecological networks in a fragmented world , 2012 .

[158]  Masashi Murakami,et al.  FISH INVASION RESTRUCTURES STREAM AND FOREST FOOD WEBS BY INTERRUPTING RECIPROCAL PREY SUBSIDIES , 2004 .

[159]  N. Williams,et al.  Extinction order and altered community structure rapidly disrupt ecosystem functioning. , 2005, Ecology letters.

[160]  Timothée Poisot,et al.  A comparative study of ecological specialization estimators , 2012 .

[161]  S. Mithen,et al.  Food-web models that generate constant predator-prey ratios , 1986, Oecologia.

[162]  J. Memmott,et al.  The Impact of the Invasive Alien Plant, Impatiens glandulifera, on Pollen Transfer Networks , 2015, PloS one.

[163]  Neo D. Martinez,et al.  The macroecology of phylogenetically structured hummingbird–plant networks , 2015 .

[164]  Patrick L. Thompson,et al.  Warming shifts top-down and bottom-up control of pond food web structure and function , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[165]  J. C. Marlin,et al.  Plant-Pollinator Interactions over 120 Years: Loss of Species, Co-Occurrence, and Function , 2013, Science.

[166]  Pedro Jordano,et al.  GEOGRAPHIC PATTERNS IN PLANT–POLLINATOR MUTUALISTIC NETWORKS , 2002 .

[167]  J. Tylianakis Understanding the Web of Life: The Birds, the Bees, and Sex with Aliens , 2008, PLoS biology.

[168]  J. Montoya,et al.  Invasions cause biodiversity loss and community simplification in vertebrate food webs , 2014 .

[169]  R. Morris,et al.  Apparent competition and insect community structure: towards a spatial perspective , 2005 .

[170]  Ruben H. Heleno,et al.  Global patterns of mainland and insular pollination networks , 2016 .

[171]  L. Russo,et al.  Deliberately increased network connectance in a plant-pollinator community experiment , 2016, J. Complex Networks.

[172]  Rebecca E. Irwin,et al.  The importance of interannual variation and bottom–up nitrogen enrichment for plant–pollinator networks , 2009 .

[173]  T. Tscharntke,et al.  Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. , 2006, Ecology letters.

[174]  Nicolas Loeuille,et al.  The ecological and evolutionary implications of merging different types of networks. , 2011, Ecology letters.

[175]  Jane Memmott,et al.  The structure of a tropical host-parasitoid community , 1994 .

[176]  D. Srivastava,et al.  Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem. , 2015, Ecology.

[177]  Joseph Tzanopoulos,et al.  Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. , 2008, Ecology letters.

[178]  Rodrigo Ramos-Jiliberto,et al.  Topological plasticity increases robustness of mutualistic networks. , 2012, The Journal of animal ecology.

[179]  D. Stouffer,et al.  Exotic birds increase generalization and compensate for native bird decline in plant-frugivore assemblages. , 2014, The Journal of animal ecology.

[180]  Carol M. Frost,et al.  Community-level net spillover of natural enemies from managed to natural forest. , 2015, Ecology.

[181]  Serguei Saavedra,et al.  Strong contributors to network persistence are the most vulnerable to extinction , 2011, Nature.

[182]  Ulrich Brose,et al.  Effects of environmental warming and drought on size-structured soil food webs , 2014 .

[183]  M. Devoto,et al.  Patterns of interaction between plants and pollinators along an environmental gradient , 2005 .