The Lagrange Multiplier Rule for Multifunctions in Banach Spaces

We study general constrained multiobjective optimization problems with objectives being closed multifunctions in Banach spaces. In terms of the coderivatives and normal cones, we provide generalized Lagrange multiplier rules as necessary optimality conditions of the above problems. In an Asplund space setting, sharper results are presented.

[1]  Jonathan M. Borwein,et al.  A survey of subdifferential calculus with applications , 2002 .

[2]  Neil Genzlinger A. and Q , 2006 .

[3]  M. Minami Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space , 1983 .

[4]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[5]  BORIS S. MORDUKHOVICH,et al.  Necessary Suboptimality and Optimality Conditions via Variational Principles , 2002, SIAM J. Control. Optim..

[6]  Boris S. Mordukhovich,et al.  An Extended Extremal Principle with Applications to Multiobjective Optimization , 2003, SIAM J. Optim..

[7]  Xiaoqi Yang,et al.  First and Second-Order Optimality Conditions for Convex Composite Multiobjective Optimization , 1997 .

[8]  C. Zalinescu,et al.  Comparison of Existence Results for Efficient Points , 2000 .

[9]  Alicja Sterna-Karwat,et al.  On existence of cone-maximal points in real topological linear spaces , 1986 .

[10]  Boris S. Mordukhovich,et al.  Nonconvex differential calculus for infinite-dimensional multifunctions , 1996 .

[11]  Mordechai I. Henig,et al.  Existence and characterization of efficient decisions with respect to cones , 1982, Math. Program..

[12]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[13]  Boris S. Mordukhovich,et al.  Coderivatives of set-valued mappings: Calculus and applications , 1997 .

[14]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[15]  Lamberto Cesari,et al.  Existence theorems for Pareto optimization; multivalued and Banach space valued functionals , 1978 .

[16]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[17]  Qiji J. Zhu,et al.  Multiobjective optimization problem with variational inequality constraints , 2003, Math. Program..

[18]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[19]  Xi Yin Zheng,et al.  The Fermat rule for multifunctions on Banach spaces , 2005, Math. Program..

[20]  L. Thibault,et al.  Qualification Conditions for Calculus Rules of Coderivatives of Multivalued Mappings , 1998 .

[21]  G. Isac Pareto Optimization in Infinite Dimensional Spaces: The Importance of Nuclear Cones , 1994 .

[22]  Fabián Flores Bazán Ideal, weakly efficient solutions for vector optimization problems , 2002, Math. Program..

[23]  Boris S. Mordukhovich,et al.  Necessary Conditions in Nonsmooth Minimization via Lower and Upper Subgradients , 2004 .

[24]  Jonathan M. Borwein,et al.  On the Existence of Pareto Efficient Points , 1983, Math. Oper. Res..

[25]  D. Varberg Convex Functions , 1973 .

[26]  Marián Fabian,et al.  Sub differentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss , 1989 .

[27]  Huynh van Ngai,et al.  A Fuzzy Necessary Optimality Condition for Non-Lipschitz Optimization in Asplund Spaces , 2002, SIAM J. Optim..

[28]  Qiji J. Zhu,et al.  Hamiltonian Necessary Conditions for a Multiobjective Optimal Control Problem with Endpoint Constraints , 2000, SIAM J. Control. Optim..

[29]  Alberto Zaffaroni,et al.  Degrees of Efficiency and Degrees of Minimality , 2003, SIAM J. Control. Optim..

[30]  Jonathan M. Borwein,et al.  Necessary conditions for constrained optimization problems with semicontinuous and continuous data , 1998 .

[31]  Johannes Jahn,et al.  The Lagrange Multiplier Rule in Set-Valued Optimization , 1999, SIAM J. Optim..

[32]  Qiji J. Zhu Necessary Conditions for Constrained Optimization Problems in Smooth Banach Spaces and Applications , 2002, SIAM J. Optim..