The Lagrange Multiplier Rule for Multifunctions in Banach Spaces
暂无分享,去创建一个
[1] Jonathan M. Borwein,et al. A survey of subdifferential calculus with applications , 2002 .
[2] Neil Genzlinger. A. and Q , 2006 .
[3] M. Minami. Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space , 1983 .
[4] B. Mordukhovich,et al. Nonsmooth sequential analysis in Asplund spaces , 1996 .
[5] BORIS S. MORDUKHOVICH,et al. Necessary Suboptimality and Optimality Conditions via Variational Principles , 2002, SIAM J. Control. Optim..
[6] Boris S. Mordukhovich,et al. An Extended Extremal Principle with Applications to Multiobjective Optimization , 2003, SIAM J. Optim..
[7] Xiaoqi Yang,et al. First and Second-Order Optimality Conditions for Convex Composite Multiobjective Optimization , 1997 .
[8] C. Zalinescu,et al. Comparison of Existence Results for Efficient Points , 2000 .
[9] Alicja Sterna-Karwat,et al. On existence of cone-maximal points in real topological linear spaces , 1986 .
[10] Boris S. Mordukhovich,et al. Nonconvex differential calculus for infinite-dimensional multifunctions , 1996 .
[11] Mordechai I. Henig,et al. Existence and characterization of efficient decisions with respect to cones , 1982, Math. Program..
[12] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[13] Boris S. Mordukhovich,et al. Coderivatives of set-valued mappings: Calculus and applications , 1997 .
[14] E. Beckenbach. CONVEX FUNCTIONS , 2007 .
[15] Lamberto Cesari,et al. Existence theorems for Pareto optimization; multivalued and Banach space valued functionals , 1978 .
[16] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[17] Qiji J. Zhu,et al. Multiobjective optimization problem with variational inequality constraints , 2003, Math. Program..
[18] R. Phelps. Convex Functions, Monotone Operators and Differentiability , 1989 .
[19] Xi Yin Zheng,et al. The Fermat rule for multifunctions on Banach spaces , 2005, Math. Program..
[20] L. Thibault,et al. Qualification Conditions for Calculus Rules of Coderivatives of Multivalued Mappings , 1998 .
[21] G. Isac. Pareto Optimization in Infinite Dimensional Spaces: The Importance of Nuclear Cones , 1994 .
[22] Fabián Flores Bazán. Ideal, weakly efficient solutions for vector optimization problems , 2002, Math. Program..
[23] Boris S. Mordukhovich,et al. Necessary Conditions in Nonsmooth Minimization via Lower and Upper Subgradients , 2004 .
[24] Jonathan M. Borwein,et al. On the Existence of Pareto Efficient Points , 1983, Math. Oper. Res..
[25] D. Varberg. Convex Functions , 1973 .
[26] Marián Fabian,et al. Sub differentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss , 1989 .
[27] Huynh van Ngai,et al. A Fuzzy Necessary Optimality Condition for Non-Lipschitz Optimization in Asplund Spaces , 2002, SIAM J. Optim..
[28] Qiji J. Zhu,et al. Hamiltonian Necessary Conditions for a Multiobjective Optimal Control Problem with Endpoint Constraints , 2000, SIAM J. Control. Optim..
[29] Alberto Zaffaroni,et al. Degrees of Efficiency and Degrees of Minimality , 2003, SIAM J. Control. Optim..
[30] Jonathan M. Borwein,et al. Necessary conditions for constrained optimization problems with semicontinuous and continuous data , 1998 .
[31] Johannes Jahn,et al. The Lagrange Multiplier Rule in Set-Valued Optimization , 1999, SIAM J. Optim..
[32] Qiji J. Zhu. Necessary Conditions for Constrained Optimization Problems in Smooth Banach Spaces and Applications , 2002, SIAM J. Optim..