Modeling the risk of invasion and spread of Tuta absoluta in Africa

Tuta absoluta is an invasive insect that originated from South America and has spread to Europe Africa and Asia. Since its detection in Spain in 2006, the pest is continuing to expand its geographical range, including the recent detection in several Sub-Saharan African countries. The present study proposed a model based on cellular automata to predict year-to-year the risk of the invasion and spread of T. absoluta across Africa. Using, land vegetation cover, temperature, relative humidity and yield of tomato production as key driving factors, we were able to mimic the spreading behavior of the pest, and to understand the role that each of these factors play in the process of propagation of invasion. Simulations by inferring the pest’s natural ability to fly long distance revealed that T. absoluta could reach South of Africa ten years after being detected in Spain (Europe). Findings also reveal that relative humidity and the presence of T. absoluta host plants are important factors for improving the accuracy of the prediction. The study aims to inform stakeholders in plant health, plant quarantine, and pest management on the risks that T. absoluta may cause at local, regional and event global scales. It is suggested that adequate measures should be put in place to stop, control and contain the process used by this pest to expand its range.

[1]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[2]  S. Ekesi,et al.  Host plants record for tomato leaf miner Tuta absoluta (Meyrick) in Sudan , 2015 .

[3]  J. C. Bakker Analysis of humidity effects on growth and production of glasshouse fruit vegetables. , 1991 .

[4]  S. L. Brown,et al.  Private pesticide applicator training manual , 1987 .

[5]  R. Anderson,et al.  Persistence and dynamics in lattice models of epidemic spread. , 1996, Journal of theoretical biology.

[6]  W. Parton,et al.  Agricultural intensification and ecosystem properties. , 1997, Science.

[7]  J. Rosenheim,et al.  Should increasing the field size of monocultural crops be expected to exacerbate pest damage , 2012 .

[8]  John Samuel,et al.  A simple cellular automaton model for influenza A viral infections. , 2004, Journal of theoretical biology.

[9]  B. Hardy Major potato diseases, insects, and nematodes , 1996 .

[10]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[11]  W. B. Showers Migratory ecology of the black cutworm. , 1997, Annual review of entomology.

[12]  G. Decocq,et al.  Spatial spread of an alien tree species in a heterogeneous forest landscape: a spatially realistic simulation model , 2008, Landscape Ecology.

[13]  Henri E. Z. Tonnang,et al.  Correction: Identification and Risk Assessment for Worldwide Invasion and Spread of Tuta absoluta with a Focus on Sub-Saharan Africa: Implications for Phytosanitary Measures and Management , 2015, PloS one.

[14]  A. Alma,et al.  Adaptation of Indigenous Larval Parasitoids to Tuta absoluta (Lepidoptera: Gelechiidae) in Italy , 2012, Journal of economic entomology.

[15]  Brian Leung,et al.  Modelling local and long‐distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America , 2006 .

[16]  Patrice Langlois Simulation of Complex Systems in GIS: Langlois/Simulation of Complex Systems in GIS , 2013 .

[17]  M. Picanço,et al.  Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta , 2013 .

[18]  Michael L. Cain,et al.  Methods for estimating long-distance dispersal , 2003 .

[19]  W. Platt,et al.  Fuels and fires influence vegetation via above‐ and belowground pathways in a high‐diversity plant community , 2015 .

[20]  D. Ferro,et al.  Reproduction and Dispersal of Summer-Generation Colorado Potato Beetle (Coleoptera: Chrysomelidae) , 1999 .

[21]  E. Meyrick III. Descriptions of South American Micro-Lepidoptera , 2009 .

[22]  Simon Benhamou,et al.  Spatiotemporal dynamics of forage and water resources shape space use of West African savanna buffaloes , 2011 .

[23]  Roderick Hunt,et al.  A simple cellular automaton model for high-level vegetation dynamics , 2007 .

[24]  D. Povolný On three Neotropical species of Gnorimoschemini (Lepidoptera, Gelechiidae) mining Solanaceae , 1975 .

[25]  Donna J. Lee,et al.  Technology adoption and mitigation of invasive species damage and risk: application to zebra mussels , 2012 .

[26]  Henri E. Z. Tonnang,et al.  Identification and Risk Assessment for Worldwide Invasion and Spread of Tuta absoluta with a Focus on Sub-Saharan Africa: Implications for Phytosanitary Measures and Management , 2015, PloS one.

[27]  Edward A. Codling,et al.  Modelling larval dispersal and behaviour of coral reef fishes , 2013 .

[28]  R. Chapman The Insects: Structure and Function , 1969 .

[29]  Karin Frank,et al.  Pattern-oriented modelling in population ecology , 1996 .

[30]  D. Yemshanov,et al.  Using a Network Model to Assess Risk of Forest Pest Spread via Recreational Travel , 2014, PloS one.

[31]  Clifford E. Kraft,et al.  PREDICTION OF LONG‐DISTANCE DISPERSAL USING GRAVITY MODELS: ZEBRA MUSSEL INVASION OF INLAND LAKES , 2001 .

[32]  Uta Berger,et al.  Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology , 2005, Science.

[33]  S. Gage,et al.  Ecological scaling of aerobiological dispersal processes , 1999 .

[34]  T. Brévault,et al.  Tuta absoluta Meyrick (Lepidoptera: Gelechiidae): A New Threat to Tomato Production in Sub-Saharan Africa , 2014 .

[35]  T. Tscharntke,et al.  Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control , 2006, Proceedings of the Royal Society B: Biological Sciences.

[36]  T. Osawa,et al.  Many alien invasive plants disperse against the direction of stream flow in riparian areas , 2013 .

[37]  P. Erdoğan,et al.  Life table of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). , 2014 .

[38]  L. Ferreri,et al.  Cellular automata for contact ecoepidemic processes in predator–prey systems , 2013 .

[39]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[40]  M. Wikelski,et al.  Vegetation dynamics drive segregation by body size in Galapagos tortoises migrating across altitudinal gradients. , 2013, The Journal of animal ecology.

[41]  Heiko Balzter,et al.  Cellular automata models for vegetation dynamics , 1998 .

[42]  D. Rodríguez,et al.  Determination of levels of damage caused by different densities of Tuta absoluta populations (Lepidoptera: Gelechiidae) under greenhouse conditions , 2010 .

[43]  J. Zanuncio,et al.  Ecological Life Table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) , 1998 .

[44]  D. Pfeiffer,et al.  First Record of Tuta absoluta (Lepidoptera: Gelechiidae) in Senegal , 2013 .

[45]  Katriona Shea,et al.  Measuring plant dispersal: an introduction to field methods and experimental design , 2006, Plant Ecology.

[46]  Nathalie Pettorelli,et al.  The Normalized Difference Vegetation Index , 2014 .

[47]  A. Roques Biological invasion. , 2012, Integrative zoology.

[48]  Iuri Emmanuel de Paula Ferreira,et al.  Modelling fungus dispersal scenarios using cellular automata , 2013, Ecol. Informatics.

[49]  Linda See,et al.  Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia , 2009 .

[50]  K. Clarke,et al.  A Cellular Automaton Model of Wildfire Propagation and Extinction , 1994 .

[51]  Mira Kattwinkel,et al.  Modelling multi-species response to landscape dynamics: mosaic cycles support urban biodiversity , 2009, Landscape Ecology.

[52]  Dongsheng Wang,et al.  Design and Implementation of Aculops Lycopersici Population Dynamic Model Prototype Based on Cellular Automata , 2008, CCTA.

[53]  Alexandra D. Syphard,et al.  Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California , 2005 .

[54]  Nicolas Desneux,et al.  The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production , 2011, Journal of Pest Science.

[55]  J. Travis,et al.  Dispersal and species’ responses to climate change , 2013 .

[56]  Christine Poncet,et al.  Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control , 2010, Journal of Pest Science.

[57]  Brian D. Inouye,et al.  SPATIAL HETEROGENEITY EXPLAINS THE SCALE DEPENDENCE OF THE NATIVE-EXOTIC DIVERSITY RELATIONSHIP , 2005 .

[58]  E. Meyrick Descriptions of South African Micro-lepidoptera , 1911 .

[59]  J. Palutikof,et al.  Modelling dispersal of a temperate insect in a changing climate , 2006, Proceedings of the Royal Society B: Biological Sciences.

[60]  James P. Hoffmann,et al.  Modeling invasive species spread in Lake Champlain via evolutionary computations , 2011, Theory in Biosciences.

[61]  H. Kläring,et al.  Guidelines to use tomato in experiments with a controlled environment , 2014, Front. Plant Sci..

[62]  David Pimentel,et al.  Techniques for reducing pesticide use : economic and environmental benefits , 1997 .

[63]  O. Dangles,et al.  Temperature as a key driver of ecological sorting among invasive pest species in the tropical Andes. , 2008, Ecological applications : a publication of the Ecological Society of America.

[64]  Hans Van Dyck,et al.  Dispersal behaviour in fragmented landscapes: Routine or special movements? , 2005 .

[65]  S. Ruan,et al.  Patterns of patchy spread in multi-species reaction-diffusion models , 2008 .

[66]  R. S. Prasad Behavioural analysis of feeding and reproduction in haematophagous insects , 1985 .

[67]  M. Picanço,et al.  Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. , 2011, Pest management science.

[68]  François Rebaudo,et al.  Modeling invasive species spread in complex landscapes: the case of potato moth in Ecuador , 2011, Landscape Ecology.

[69]  K. Abbes,et al.  The tomato leafminer Tuta absoluta (Meyrick) in Tunisia: current status and management strategies , 2012 .

[70]  A. Komarov,et al.  The concept of discrete description of plant ontogenesis and cellular automata models of plant populations , 2003 .

[71]  A. Tsunekawa,et al.  Satellite tracking of Mongolian gazelles (Procapra gutturosa) and habitat shifts in their seasonal ranges , 2006 .

[72]  D. Richardson,et al.  Plant invasions: merging the concepts of species invasiveness and community invasibility , 2006 .

[73]  The Principles of Insect Physiology. , 1966 .

[74]  P. C. Barona Using Remote Sensing and a Cellular Automata-Markov Chains-GEOMOD model for the Quantification of the Future Spread of an Invasive Plant: A Case Study of Psidium guajava in Isabela Island, Galapagos , 2014 .

[75]  J. D. Vendramim,et al.  Bioactivity of Piper extracts on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato , 2015 .

[76]  John Weier and David Herring Measuring Vegetation (NDVI & EVI) : Feature Articles , 2000 .

[77]  J. Sexton,et al.  The relative contribution of terrain, land cover, and vegetation structure indices to species distribution models , 2013 .

[78]  A. Farashi,et al.  Modeling the spread of invasive nutrias (Myocastor coypus) over Iran , 2015 .

[79]  W. Luo,et al.  Population Development of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under Simulated UK Glasshouse Conditions , 2013, Insects.

[80]  Caz M Taylor,et al.  The spatial spread of invasions: new developments in theory and evidence , 2004 .

[81]  Lulu Kang,et al.  Regression-Based Inverse Distance Weighting With Applications to Computer Experiments , 2011, Technometrics.

[82]  S. Lavorel,et al.  Do we need land‐cover data to model species distributions in Europe? , 2004 .

[83]  Clement Atzberger,et al.  Data service platform for MODIS Vegetation Indices time series processing at BOKU Vienna: current status and future perspectives , 2012, Remote Sensing.

[84]  E. F. Moore Machine Models of Self-Reproduction , 1962 .

[85]  Nils Chr. Stenseth,et al.  To disperse or not to disperse: who does it and why? , 1992 .