Multifunctional magnetic nanoparticles for targeted imaging and therapy.

Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or small molecule screens, or are based on antibodies or aptamers. Secondary reporters and combined therapeutic molecules have further opened potential clinical applications of these materials. This review summarizes some of the recent biomedical applications of these newer magnetic nanomaterials.

[1]  A. Bjørnerud,et al.  NC100150 injection, a preparation of optimized iron oxide nanoparticles for positive‐contrast MR angiography , 2000, Journal of magnetic resonance imaging : JMRI.

[2]  Thomas Wisniewski,et al.  Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging , 2003, Magnetic resonance in medicine.

[3]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[4]  J. Bacri,et al.  Biomedical applications of maghemite ferrofluid. , 1998, Biochimie.

[5]  S. H. Koenig,et al.  ‘NC100150’, a preparation of iron oxide nanoparticles ideal for positive-contrast MR angiography , 1999, Magnetic Resonance Materials in Physics, Biology and Medicine.

[6]  Ralph Weissleder,et al.  Nanoparticle imaging of integrins on tumor cells. , 2006, Neoplasia.

[7]  Peter van Gelderen,et al.  Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells , 2001, Nature Biotechnology.

[8]  R. Weissleder,et al.  Magnetic resonance imaging of liver tumors. , 1989, Seminars in ultrasound, CT, and MR.

[9]  C. Hoeller,et al.  MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. , 2004, Magnetic resonance imaging.

[10]  R. Weissleder,et al.  Cell-specific targeting of nanoparticles by multivalent attachment of small molecules , 2005, Nature Biotechnology.

[11]  Ralph Weissleder,et al.  “Clickable” Nanoparticles for Targeted Imaging , 2006, Molecular imaging.

[12]  Peter Libby,et al.  The immune response in atherosclerosis: a double-edged sword , 2006, Nature Reviews Immunology.

[13]  Anna Moore,et al.  In vivo magnetic resonance imaging of transgene expression , 2000, Nature Medicine.

[14]  Ralph Weissleder,et al.  In Vivo Phage Display Selection Yields Atherosclerotic Plaque Targeted Peptides for Imaging , 2006, Molecular Imaging and Biology.

[15]  Ralph Weissleder,et al.  A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. , 2003, Molecular imaging.

[16]  T J Brady,et al.  Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. , 1992, Radiology.

[17]  C. Compton,et al.  Ferrite-enhanced MR imaging of hepatic lymphoma: an experimental study in rats. , 1987, AJR. American journal of roentgenology.

[18]  T. Nishimura,et al.  Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma , 2005, British Journal of Cancer.

[19]  Zhichuan J. Xu,et al.  Controlled synthesis and chemical conversions of FeO nanoparticles. , 2007, Angewandte Chemie.

[20]  R. Edelman,et al.  Multicentre dose-ranging study on the efficacy of USPIO ferumoxtran-10 for liver MR imaging. , 2000, Clinical radiology.

[21]  B. Hamm,et al.  Phase I Clinical Evaluation of Citrate-coated Monocrystalline Very Small Superparamagnetic Iron Oxide Particles as a New Contrast Medium for Magnetic Resonance Imaging , 2004, Investigative radiology.

[22]  Raoul Kopelman,et al.  Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors , 2006, Clinical Cancer Research.

[23]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[24]  Ralph Weissleder,et al.  Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle , 2005, Circulation research.

[25]  Xiaoping P. Hu,et al.  Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent , 2004, JBIC Journal of Biological Inorganic Chemistry.

[26]  J. Gillard,et al.  Noninvasive imaging of carotid plaque inflammation , 2004, Neurology.

[27]  Ralph Weissleder,et al.  Annexin V–CLIO: A Nanoparticle for Detecting Apoptosis by MRI , 2002, Academic radiology.

[28]  Akiyoshi Wada,et al.  Dextran-magnetite: A new relaxation reagent and its application to T2 measurements in gel systems , 1978 .

[29]  R. Weissleder,et al.  Detection of macrophage activity in atherosclerosis in vivo using multichannel, high-resolution laser scanning fluorescence microscopy. , 2006, Journal of biomedical optics.

[30]  M. Muhammed,et al.  A High‐Performance Magnetic Resonance Imaging T2 Contrast Agent , 2007 .

[31]  N. Devaraj,et al.  Copper Catalyzed Azide‐Alkyne Cycloadditions on Solid Surfaces: Applications and Future Directions , 2007 .

[32]  M. Joniau,et al.  Mechanistic aspects of the adsorption of phospholipids onto lauric acid stabilized magnetite nanocolloids , 1991 .

[33]  R. Weissleder,et al.  The diagnosis of splenic lymphoma by MR imaging: value of superparamagnetic iron oxide. , 1989, AJR. American journal of roentgenology.

[34]  R. Weissleder,et al.  Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. , 2006, Bioconjugate chemistry.

[35]  Ralph Weissleder,et al.  Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells , 2000, Nature Biotechnology.

[36]  Ralph Weissleder,et al.  In vivo assessment of RAS-dependent maintenance of tumor angiogenesis by real-time magnetic resonance imaging. , 2005, Cancer research.

[37]  J A Frank,et al.  Magnetoferritin: Characterization of a novel superparamagnetic MR contrast agent , 1994, Journal of magnetic resonance imaging : JMRI.

[38]  Ralph Weissleder,et al.  Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis , 2008, Circulation.

[39]  R. Weissleder,et al.  Human transferrin receptor gene as a marker gene for MR imaging. , 2001, Radiology.

[40]  George M. Whitesides,et al.  Magnetic separations in biotechnology , 1983 .

[41]  Vasilis Ntziachristos,et al.  Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy. , 2003, Neoplasia.

[42]  P. Libby Inflammation in atherosclerosis , 2002, Nature.

[43]  R. Weissleder,et al.  MR imaging of splenic metastases: ferrite-enhanced detection in rats. , 1987, AJR. American journal of roentgenology.

[44]  J. Bacri,et al.  Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. , 2003, Biomaterials.

[45]  R. Weissleder,et al.  In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. , 2005, Bioconjugate chemistry.

[46]  Jan Grimm,et al.  Novel Nanosensors for Rapid Analysis of Telomerase Activity , 2004, Cancer Research.

[47]  R Weissleder,et al.  High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. , 1999, Bioconjugate chemistry.

[48]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[49]  Mauro Ferrari,et al.  The Molecular Analysis of Breast Cancer Utilizing Targeted Nanoparticle Based Ultrasound Contrast Agents , 2005, Technology in cancer research & treatment.

[50]  R. Weissleder,et al.  Multivalent effects of RGD peptides obtained by nanoparticle display. , 2006, Journal of medicinal chemistry.

[51]  S. Dhanasekaran,et al.  Delineation of prognostic biomarkers in prostate cancer , 2001, Nature.

[52]  Anna Moore,et al.  In Vivo Targeting of Underglycosylated MUC-1 Tumor Antigen Using a Multimodal Imaging Probe , 2004, Cancer Research.

[53]  R. Weissleder,et al.  Nanoparticles for the optical imaging of tumor E-selectin. , 2005, Neoplasia.

[54]  R Weissleder,et al.  Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. , 1988, Radiology.

[55]  Jurgen E Schneider,et al.  In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide , 2007, Nature Medicine.

[56]  R. Weissleder,et al.  Splenic Imaging with Ultrasmall Superparamagnetic Iron Oxide Ferumoxtran-10 (AMI-7227): Preliminary Observations , 2001, Journal of computer assisted tomography.

[57]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. , 1990, Radiology.

[58]  R. Weissleder,et al.  Development of nanoparticle libraries for biosensing. , 2006, Bioconjugate chemistry.

[59]  R Weissleder,et al.  Improvement of MRI probes to allow efficient detection of gene expression. , 2000, Bioconjugate chemistry.

[60]  Ralph Weissleder,et al.  In vivo imaging of molecularly targeted phage. , 2006, Neoplasia.

[61]  D. Larkman,et al.  Detection of vascular expression of E-selectin in vivo with MR imaging. , 2006, Radiology.

[62]  R. Ivkov,et al.  Development of Tumor Targeting Bioprobes (111In-Chimeric L6 Monoclonal Antibody Nanoparticles) for Alternating Magnetic Field Cancer Therapy , 2005, Clinical Cancer Research.

[63]  Ralph Weissleder,et al.  Sensitive, Noninvasive Detection of Lymph Node Metastases , 2004, PLoS medicine.

[64]  L. Silengo,et al.  Quantification of the expression level of integrin receptor αvβ3 in cell lines and MR imaging with antibody‐coated iron oxide particles , 2006 .

[65]  R. Weissleder,et al.  Cellular Imaging of Inflammation in Atherosclerosis Using Magnetofluorescent Nanomaterials , 2006, Molecular imaging.

[66]  R Weissleder,et al.  Superparamagnetic iron oxide: pharmacokinetics and toxicity. , 1989, AJR. American journal of roentgenology.

[67]  Ralph Weissleder,et al.  Magnetic relaxation switches capable of sensing molecular interactions , 2002, Nature Biotechnology.

[68]  R. Weissleder,et al.  Trapping of dextran-coated colloids in liposomes by transient binding to aminophospholipid: preparation of ferrosomes. , 1994, Biochimica et biophysica acta.

[69]  C. W. Jung Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. , 1995, Magnetic resonance imaging.

[70]  J. Bulte,et al.  Magnetoliposomes as contrast agents. , 2003, Methods in enzymology.

[71]  Michael J Sailor,et al.  Biomimetic amplification of nanoparticle homing to tumors , 2007, Proceedings of the National Academy of Sciences.

[72]  Ralph Weissleder,et al.  Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. , 2002, Bioconjugate chemistry.

[73]  Robert Langer,et al.  Magnetic relaxation switch detection of human chorionic gonadotrophin. , 2007, Bioconjugate chemistry.

[74]  A. P. Alivisatos,et al.  A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides , 1999 .

[75]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[76]  Martin J Graves,et al.  In Vivo Detection of Macrophages in Human Carotid Atheroma: Temporal Dependence of Ultrasmall Superparamagnetic Particles of Iron Oxide–Enhanced MRI , 2004, Stroke.

[77]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. , 1990, Radiology.

[78]  Alexander Petrovsky,et al.  Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. , 2002, Bioconjugate chemistry.

[79]  Ralph Weissleder,et al.  Detection of early prostate cancer using a hepsin-targeted imaging agent. , 2008, Cancer research.

[80]  Ralph Weissleder,et al.  Noninvasive Vascular Cell Adhesion Molecule-1 Imaging Identifies Inflammatory Activation of Cells in Atherosclerosis , 2006, Circulation.

[81]  G. Hansson Inflammation, atherosclerosis, and coronary artery disease. , 2005, The New England journal of medicine.

[82]  R Weissleder,et al.  Improved delineation of human brain tumors on MR images using a long‐circulating, superparamagnetic iron oxide agent , 1999, Journal of magnetic resonance imaging : JMRI.

[83]  M. D. Butterworth,et al.  Development of Systems for Targeting the Regional Lymph Nodes for Diagnostic Imaging: In Vivo Behaviour of Colloidal PEG-Coated Magnetite Nanospheres in the Rat Following Interstitial Administration , 2001, Pharmaceutical Research.

[84]  J. Le Bas,et al.  Ultrasmall particulate iron oxides as contrast agents for magnetic resonance spectroscopy: A dose‐effect study , 2001, Journal of magnetic resonance imaging : JMRI.

[85]  Ralph Weissleder,et al.  A macrophage-targeted theranostic nanoparticle for biomedical applications. , 2006, Small.

[86]  P. Jallet,et al.  Nonpolymeric Coatings of Iron Oxide Colloids for Biological Use as Magnetic Resonance Imaging Contrast Agents. , 2001, Journal of colloid and interface science.