MPEC Methods for Bilevel Optimization Problems

We study optimistic bilevel optimization problems, where we assume the lower-level problem is convex with a nonempty, compact feasible region and satisfies a constraint qualification for all possible upper-level decisions. Replacing the lowerlevel optimization problem by its first-order conditions results in a mathematical program with equilibrium constraints (MPEC) that needs to be solved. We review the relationship between the MPEC and bilevel optimization problem and then survey the theory, algorithms, and software environments for solving the MPEC formulations.

[1]  Zengxin Wei,et al.  On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods , 1999, SIAM J. Optim..

[2]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[3]  Stephen J. Wright,et al.  Some properties of regularization and penalization schemes for MPECs , 2004, Optim. Methods Softw..

[4]  Jane J. Ye,et al.  New Necessary Optimality Conditions for Bilevel Programs by Combining the MPEC and Value Function Approaches , 2010, SIAM J. Optim..

[5]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[6]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[7]  Georgia Perakis,et al.  A Robust SQP Method for Mathematical Programs with Linear Complementarity Constraints , 2006, Comput. Optim. Appl..

[8]  Christian Kanzow,et al.  Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints , 2011, Mathematical Programming.

[9]  Oliver Stein,et al.  The Adaptive Convexification Algorithm: A Feasible Point Method for Semi-Infinite Programming , 2007, SIAM J. Optim..

[10]  Sven Leyffer,et al.  Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..

[11]  J. Mirrlees The Theory of Moral Hazard and Unobservable Behaviour: Part I , 1999 .

[12]  Nguyen Huy Chieu,et al.  Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and their Local Preservation Property , 2014, J. Optim. Theory Appl..

[13]  Mihai Anitescu,et al.  On Using the Elastic Mode in Nonlinear Programming Approaches to Mathematical Programs with Complementarity Constraints , 2005, SIAM J. Optim..

[14]  Daniel Ralph,et al.  QPECgen, a MATLAB Generator for Mathematical Programs with Quadratic Objectives and Affine Variational Inequality Constraints , 1999, Comput. Optim. Appl..

[15]  Claire S. Adjiman,et al.  Branch-and-Sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part II: Convergence analysis and numerical results , 2014, Journal of Global Optimization.

[16]  Patrice Marcotte,et al.  Bilevel programming: A survey , 2005, 4OR.

[17]  Patrice Marcotte,et al.  Two-stage stochastic bilevel programming over a transportation network , 2013 .

[18]  M. Fukushima,et al.  Smoothing methods for mathematical programs with equilibrium constraints , 2004, International Conference on Informatics Research for Development of Knowledge Society Infrastructure, 2004. ICKS 2004..

[19]  Abhishek Dwivedi,et al.  Bi-level and Multi-Level Programming Problems: Taxonomy of Literature Review and Research Issues , 2018 .

[20]  Claire S. Adjiman,et al.  Branch-and-Sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part I: Theoretical development , 2014, Journal of Global Optimization.

[21]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[22]  Huifu Xu,et al.  An Implicit Programming Approach for a Class of Stochastic Mathematical Programs with Complementarity Constraints , 2006, SIAM J. Optim..

[23]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[24]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[25]  Helmut Gfrerer,et al.  Optimality Conditions for Disjunctive Programs Based on Generalized Differentiation with Application to Mathematical Programs with Equilibrium Constraints , 2014, SIAM J. Optim..

[26]  Lorenz T. Biegler,et al.  An Interior Point Method for Mathematical Programs with Complementarity Constraints (MPCCs) , 2005, SIAM J. Optim..

[27]  Roger Fletcher,et al.  Nonlinear programming and nonsmooth optimization by successive linear programming , 1989, Math. Program..

[28]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[29]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[30]  Jonathan F. BARD,et al.  Convex two-level optimization , 1988, Math. Program..

[31]  Stephan Dempe,et al.  KKT Reformulation and Necessary Conditions for Optimality in Nonsmooth Bilevel Optimization , 2014, SIAM J. Optim..

[32]  ScheelHolger,et al.  Mathematical Programs with Complementarity Constraints , 2000 .

[33]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[34]  Che-Lin Su,et al.  Computation of Moral-Hazard Problems , 2005 .

[35]  Robert J. Vanderbei,et al.  Interior-Point Algorithms, Penalty Methods and Equilibrium Problems , 2006, Comput. Optim. Appl..

[36]  Jong-Shi Pang,et al.  A study of the difference-of-convex approach for solving linear programs with complementarity constraints , 2018, Math. Program..

[37]  Jorge Nocedal,et al.  Steering exact penalty methods for nonlinear programming , 2008, Optim. Methods Softw..

[38]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[39]  Paul I. Barton,et al.  Global solution of bilevel programs with a nonconvex inner program , 2008, J. Glob. Optim..

[40]  Sven Leyffer,et al.  Solving mathematical programs with complementarity constraints as nonlinear programs , 2004, Optim. Methods Softw..

[41]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[42]  Zhongping Wan,et al.  Second order sufficient conditions for aclass of bilevel programs with lower level second-order coneprogramming problem , 2015 .

[43]  Masao Fukushima,et al.  An Implementable Active-Set Algorithm for Computing a B-Stationary Point of a Mathematical Program with Linear Complementarity Constraints , 2002, SIAM J. Optim..

[44]  Christian Kanzow,et al.  Abadie-Type Constraint Qualification for Mathematical Programs with Equilibrium Constraints , 2005 .

[45]  M. Anitescu On Solving Mathematical Programs With Complementarity Constraints As Nonlinear Programs , 2002 .

[46]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[47]  S. Dempe,et al.  Pessimistic Bilevel Linear Optimization , 2018, Journal of Nepal Mathematical Society.

[48]  Stefan Scholtes,et al.  Nonconvex Structures in Nonlinear Programming , 2004, Oper. Res..

[49]  Paul I. Barton,et al.  Relaxation-Based Bounds for Semi-Infinite Programs , 2008, SIAM J. Optim..

[50]  Zhong Chen,et al.  Pessimistic Bilevel Optimization: A Survey , 2018, Int. J. Comput. Intell. Syst..

[51]  Jing Hu,et al.  On the Global Solution of Linear Programs with Linear Complementarity Constraints , 2008, SIAM J. Optim..

[52]  E. Prescott A Primer on Moral-Hazard Models , 1999 .

[53]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[54]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[55]  Christian Kanzow,et al.  The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited , 2015, Math. Oper. Res..

[56]  Oliver Stein,et al.  The adaptive convexification algorithm for semi-infinite programming with arbitrary index sets , 2012, Math. Program..

[57]  Alain B. Zemkoho,et al.  Necessary optimality conditions in pessimistic bilevel programming , 2014 .

[58]  Frank H. Clarke,et al.  A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..

[59]  Jorge Nocedal,et al.  Interior Methods for Mathematical Programs with Complementarity Constraints , 2006, SIAM J. Optim..

[60]  S. Leyffer Complementarity constraints as nonlinear equations: Theory and numerical experience , 2006 .

[61]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[62]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[63]  Michael P. Friedlander,et al.  A two-sided relaxation scheme for Mathematical Programs with Equilibrium Constraints , 2005, SIAM J. Optim..

[64]  Stephan Dempe,et al.  The bilevel programming problem: reformulations, constraint qualifications and optimality conditions , 2013, Math. Program..

[65]  J. V. Outrata,et al.  Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case , 1999, Kybernetika.

[66]  Christian Kanzow,et al.  A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints , 2006 .

[67]  Zhongping Wan,et al.  Necessary optimality condition for trilevel optimization problem , 2020 .

[68]  Georg Still,et al.  Solving bilevel programs with the KKT-approach , 2012, Mathematical Programming.

[69]  John Daniel Siirola,et al.  Modeling Bilevel Programs in Pyomo. , 2016 .

[70]  Sven Leyffer,et al.  A Globally Convergent Filter Method for MPECs , 2007 .

[71]  J. Outrata On mathematical programs with complementarity constraints , 2000 .

[72]  Daniel Ralph,et al.  Multiplier convergence in trust-region methods with application to convergence of decomposition methods for MPECs , 2007, Math. Program..

[73]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[74]  Oliver Stein,et al.  A lifting method for generalized semi-infinite programs based on lower level Wolfe duality , 2013, Comput. Optim. Appl..

[75]  Mihai Anitescu,et al.  Global Convergence of an Elastic Mode Approach for a Class of Mathematical Programs with Complementarity Constraints , 2005, SIAM J. Optim..

[76]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[77]  Oliver Stein,et al.  Feasible Method for Generalized Semi-Infinite Programming , 2010 .

[78]  M. Patriksson,et al.  Stochastic bilevel programming in structural optimization , 2001 .

[79]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[80]  Berç Rustem,et al.  Pessimistic Bilevel Optimization , 2013, SIAM J. Optim..

[81]  Alexey F. Izmailov,et al.  Global Convergence of Augmented Lagrangian Methods Applied to Optimization Problems with Degenerate Constraints, Including Problems with Complementarity Constraints , 2012, SIAM J. Optim..

[82]  R. Fletcher,et al.  Numerical experience with solving MPECs as NLPs , 2002 .

[83]  Stefan Scholtes,et al.  Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..

[84]  S. Dempe,et al.  On the solution of convex bilevel optimization problems , 2015, Computational Optimization and Applications.

[85]  Jong-Shi Pang,et al.  Three modeling paradigms in mathematical programming , 2010, Math. Program..

[86]  Roger Fletcher,et al.  On the global convergence of an SLP–filter algorithm that takes EQP steps , 2003, Math. Program..

[87]  Marcel Roelofs,et al.  AIMMS - Language Reference , 2006 .

[88]  J. Hooker,et al.  Logic-based Benders decomposition , 2003 .

[89]  John E. Mitchell,et al.  On convex quadratic programs with linear complementarity constraints , 2013, Comput. Optim. Appl..

[90]  Jane J. Ye,et al.  Enhanced Karush–Kuhn–Tucker Conditions for Mathematical Programs with Equilibrium Constraints , 2014, J. Optim. Theory Appl..

[91]  Panos M. Pardalos,et al.  Multilevel Optimization: Algorithms and Applications , 2012 .

[92]  Zhongping Wan,et al.  The models of bilevel programming with lower level second-order cone programs , 2014 .

[93]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[94]  Sven Leyffer,et al.  A pivoting algorithm for linear programming with linear complementarity constraints , 2012, Optim. Methods Softw..

[95]  Laure Pauline Fotso,et al.  Solution Concepts and New Optimality Conditions in Bilevel Multiobjective Programming , 2012 .

[96]  M. Ferris,et al.  On the solution of a minimum weight elastoplastic problem involving displacement and complementarity constraints , 1999 .

[97]  Gabriele Eichfelder,et al.  Multiobjective bilevel optimization , 2010, Math. Program..

[98]  D. Ralph,et al.  Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints , 2004 .

[99]  Christian Kanzow,et al.  Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints , 2014, Comput. Optim. Appl..

[100]  Stephen J. Wright,et al.  Elastic-mode algorithms for mathematical programs with equilibrium constraints: global convergence and stationarity properties , 2007, Math. Program..

[101]  Oliver Stein,et al.  Bi-Level Strategies in Semi-Infinite Programming , 2003 .

[102]  P. Mehlitz,et al.  Optimality conditions for mixed discrete bilevel optimization problems , 2018 .

[103]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[104]  Michael Hintermüller,et al.  A bundle-free implicit programming approach for a class of elliptic MPECs in function space , 2016, Mathematical Programming.

[105]  John Daniel Siirola,et al.  Modeling Mathematical Programs with Equilibrium Constraints in Pyomo , 2015 .

[106]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[107]  Zhongping Wan,et al.  Solving linear bilevel multiobjective programming problem via exact penalty function approach , 2015 .

[108]  Patrice Marcotte,et al.  Solving Bilevel Linear Multiobjective Programming Problems , 2011 .

[109]  Jie Sun,et al.  Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints , 2004, Math. Program..

[110]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[111]  Jing Hu,et al.  On linear programs with linear complementarity constraints , 2011, Journal of Global Optimization.