Bayesian History-Matching and Probabilistic Forecasting for Tight and Shale Wells

[1]  Olivier Gosselin,et al.  Effect of Scale Dependent Data Correlations in an Integrated History Matching Loop Combining Production Data and 4D Seismic Data , 2003 .

[2]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[5]  Mario Costa Sousa,et al.  Using differential evolution for compositional history-matching of a tight gas condensate well in the Montney Formation in western Canada , 2015 .

[6]  Duane A. McVay,et al.  Bayesian Probabilistic Decline-Curve Analysis Reliably Quantifies Uncertainty in Shale-Well-Production Forecasts , 2014 .

[7]  Jasper A. Vrugt,et al.  Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation , 2016, Environ. Model. Softw..

[8]  David S. Fulford,et al.  Machine Learning as a Reliable Technology for Evaluating Time/Rate Performance of Unconventional Wells , 2015 .

[9]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[10]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[11]  Volker Schwieger Sensitivity analysis as a general tool for model optimisation – examples for trajectory estimation , 2007 .

[12]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[13]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[14]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[15]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Mike Christie,et al.  Uncertainty quantification for porous media flows , 2006, J. Comput. Phys..

[17]  Florian Hollaender,et al.  Pressure transient formation and well testing : convolution, deconvolution and nonlinear estimation , 2010 .

[18]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[19]  I. Couckuyt,et al.  Gaussian Processes for history-matching: application to an unconventional gas reservoir , 2017, Computational Geosciences.

[20]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[21]  Andrea Saltelli,et al.  Sensitivity Analysis for Importance Assessment , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[22]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[23]  H. Sanei,et al.  Wettability of the Montney Tight Gas Formation , 2014 .