A flexible air separation process: 1. Design and steady‐state optimizations

[1]  Lawrence Megan,et al.  Low-order dynamic modeling of cryogenic distillation columns based on nonlinear wave phenomenon , 2001 .

[2]  Stanley B. Adler,et al.  A critical review of equations for predicting saturated liquid density , 1978 .

[3]  Alexander Mitsos,et al.  Economic Nonlinear Model Predictive Control for Flexible Operation of Air Separation Units , 2018 .

[4]  Christopher L.E. Swartz,et al.  Dynamic modeling and collocation-based model reduction of cryogenic air separation units , 2016 .

[5]  Victor M. Zavala,et al.  Advanced step nonlinear model predictive control for air separation units , 2009 .

[6]  Michael Baldea,et al.  Optimal Process Operations in Fast-Changing Electricity Markets: Framework for Scheduling with Low-Order Dynamic Models and an Air Separation Application , 2016 .

[7]  Alexander Mitsos,et al.  Economic Nonlinear Model Predictive Control of Multi-Product Air Separation Processes , 2019, Computers and Chemical Engineering.

[8]  Michael Baldea,et al.  Multistream heat exchangers: Equation‐oriented modeling and flowsheet optimization , 2015 .

[9]  Alexander Mitsos,et al.  DyOS - A Framework for Optimization of Large-Scale Differential Algebraic Equation Systems , 2019, Computer Aided Chemical Engineering.

[10]  Christopher L.E. Swartz,et al.  Optimization-based assessment of design limitations to air separation plant agility in demand response scenarios , 2015 .

[11]  W. Luyben,et al.  Economic Incentive for Intermittent Operation of Air Separation Plants with Variable Power Costs , 2008 .

[12]  Lloyd L. Lee,et al.  SELF-CONSISTENT EQUATIONS FOR CALCULATING THE IDEAL GAS HEAT CAPACITY, ENTHALPY, AND ENTROPY , 1981 .

[13]  A. Harmens,et al.  Vapour-liquid equilibrium N2?Ar?O2 for lower argon concentrations , 1970 .

[14]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[15]  Michael Baldea,et al.  Challenges in process optimization for new feedstocks and energy sources , 2018, Comput. Chem. Eng..

[16]  G. R. Sullivan,et al.  The development of an efficient optimal control package , 1978 .

[17]  Lorenz T. Biegler,et al.  An MPEC formulation for dynamic optimization of distillation operations , 2004, Comput. Chem. Eng..

[18]  R. Brusch,et al.  Solution of Highly Constrained Optimal Control Problems Using Nonlinear Programing , 1973 .

[19]  Wolfgang Marquardt,et al.  Discrete first- and second-order adjoints and automatic differentiation for the sensitivity analysis of dynamic models , 2010, ICCS.

[20]  Alexander Mitsos,et al.  Nonlinear Dynamic Optimization for Improved Load-Shifting Agility of Cryogenic Air Separation Plants , 2018 .

[21]  Alexander Mitsos,et al.  Reduced dynamic modeling approach for rectification columns based on compartmentalization and artificial neural networks , 2019, AIChE Journal.

[22]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[23]  W. Luyben,et al.  Improving Agility of Cryogenic Air Separation Plants , 2008 .

[24]  Alexander Mitsos,et al.  A flexible air separation process: 2. Optimal operation using economic model predictive control , 2019, AIChE Journal.

[25]  Michael Baldea,et al.  Moving horizon closed‐loop production scheduling using dynamic process models , 2017 .

[26]  Michael Baldea,et al.  Moving Horizon Scheduling of an Air Separation Unit under Fast-Changing Energy Prices , 2016 .

[27]  Lawrence Megan,et al.  Compartmental modeling of high purity air separation columns , 2005, Comput. Chem. Eng..

[28]  Heinz-Wolfgang Hring,et al.  Industrial Gases Processing , 2007 .

[29]  Ignacio E. Grossmann,et al.  Air separation with cryogenic energy storage: Optimal scheduling considering electric energy and reserve markets , 2015 .

[30]  Frank G. Kerry,et al.  Industrial Gas Handbook: Gas Separation and Purification , 2007 .

[31]  Christopher L.E. Swartz,et al.  Preemptive dynamic operation of cryogenic air separation units , 2017 .