CONSTRUCTING AUTOMORPHISM GROUPS OF p-GROUPS

ABSTRACT We present an algorithm to construct the automorphism group of a finite p-group. The method works down the lower exponent-p central series of the group. The central difficulty in each inductive step is a stabiliser computation; we introduce various approaches designed to simplify this computation.

[1]  Michael J. Smith Computing automorphisms of finite soluble groups , 1996, Bulletin of the Australian Mathematical Society.

[2]  Derek F. Holt,et al.  Testing modules for irreducibility , 1994, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[3]  J. Neubüser,et al.  On a programme for the determination of the automorphism group of a finite group , 1970 .

[4]  Scott H. Murray,et al.  Generating random elements of a finite group , 1995 .

[5]  B. Huppert Endliche Gruppen I , 1967 .

[6]  E. A. O'Brien Isomorphism Testing for p-Groups , 1994, J. Symb. Comput..

[7]  Martin Wursthorn,et al.  Isomorphisms of Modular Group Algebras: An Algorithm and its Application to Groups of Order , 1993, J. Symb. Comput..

[8]  J. I. Hall,et al.  Presentations of some 3-transposition groups , 1995 .

[9]  M. F. Newman,et al.  Determination of groups of prime-power order , 1977 .

[10]  Ákos Seress,et al.  Computing the Fitting subgroup and solvable radical for small-base permutation groups in nearly linear time , 1995, Groups and Computation.

[11]  Charles C. Sims,et al.  Computation with finitely presented groups , 1994, Encyclopedia of mathematics and its applications.

[12]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[13]  J. Neubüser,et al.  Über ein Programm zur Berechnung der Automorphismengruppe einer endlichen Gruppe , 1968 .

[14]  Bettina Eick,et al.  THE GROUPS OF ORDER qn · p , 2001 .

[15]  F. N. Cole The groups of order , 1904 .

[16]  Charles C. Sims,et al.  Computing the Order of a Solvable Permutation Group , 1990, J. Symb. Comput..

[17]  Michael Aschbacher,et al.  On the maximal subgroups of the finite classical groups , 1984 .

[18]  Kenjiro Shoda Über die Automorphismen einer endlichen Abelschen Gruppe , 1928 .

[19]  E. A. O'Brien,et al.  The p-Group Generation Algorithm , 1990, J. Symb. Comput..

[20]  Derek F. Holt,et al.  Automorphism group computation and isomorphism testing in finite groups , 2003, J. Symb. Comput..

[21]  George Havas,et al.  Application of computers to questions like those of Burnside , 1996 .

[22]  U. Martin Almost all $p$-groups have automorphism group a $p$-group , 1986 .

[23]  E. O'Brien,et al.  The groups of order 256 , 1991 .

[24]  R. Guralnick,et al.  Subgroups of GLn(q) which fix sublattices of the subspace lattice , 2003 .

[25]  Alexander Hulpke,et al.  Konstruktion transitiver Permutationsgruppen , 1996 .

[26]  E. A. O 'brien Computing Automorphism Groups of P-groups , 2022 .

[27]  G. Seber The estimation of animal abundance and related parameters , 1974 .

[28]  Gregory Butler,et al.  Fundamental Algorithms for Permutation Groups , 1991, Lecture Notes in Computer Science.