Regularizing Flows for Constrained Matrix-Valued Images

Nonlinear diffusion equations are now widely used to restore and enhance images. They allow to eliminate noise and artifacts while preserving large global features, such as object contours. In this context, we propose a differential-geometric framework to define PDEs acting on some manifold constrained datasets. We consider the case of images taking value into matrix manifolds defined by orthogonal and spectral constraints. We directly incorporate the geometry and natural metric of the underlying configuration space (viewed as a Lie group or a homogeneous space) in the design of the corresponding flows. Our numerical implementation relies on structure-preserving integrators that respect intrinsically the constraints geometry. The efficiency and versatility of this approach are illustrated through the anisotropic smoothing of diffusion tensor volumes in medical imaging.

[1]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[2]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[3]  Peter J. Olver,et al.  Geometric Integration Algorithms on Homogeneous Manifolds , 2002, Found. Comput. Math..

[4]  Stanley Osher,et al.  Numerical Methods for p-Harmonic Flows and Applications to Image Processing , 2002, SIAM J. Numer. Anal..

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[7]  Pietro Perona,et al.  Orientation diffusions , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Rachid Deriche,et al.  Orthonormal Vector Sets Regularization with PDE's and Applications , 2002, International Journal of Computer Vision.

[9]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[10]  Tony F. Chan,et al.  Variational Restoration of Nonflat Image Features: Models and Algorithms , 2001, SIAM J. Appl. Math..

[11]  S. Osher,et al.  Solving variational problems and partial differential equations mapping into general target manifolds , 2004 .

[12]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[13]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[14]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[15]  J. Marsden,et al.  Product formulas and numerical algorithms , 1978 .

[16]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[17]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[18]  B. Vemuri,et al.  Fiber tract mapping from diffusion tensor MRI , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[19]  C. Poupon Detection des faisceaux de fibres de la substance blanche pour l'etude de la connectivite anatomique cerebrale , 1999 .

[20]  Rachid Deriche,et al.  Diffusion tensor regularization with constraints preservation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[21]  S. Osher,et al.  Variational problems and PDEs on implicit surfaces , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[22]  H. Urakawa Calculus of variations and harmonic maps , 1993 .

[23]  T. Brox,et al.  Diffusion and regularization of vector- and matrix-valued images , 2002 .

[24]  Karen K. Uhlenbeck Harmonic maps into Lie groups: classical solutions of the chiral model , 1989 .

[25]  C. Botsaris Constrained optimization along geodesics , 1981 .

[26]  H. Urakawa,et al.  Harmonic maps into Lie groups and homogeneous spaces , 1997 .

[27]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[28]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[29]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[30]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[31]  J. Gallier,et al.  COMPUTING EXPONENTIALS OF SKEW-SYMMETRIC MATRICES AND LOGARITHMS OF ORTHOGONAL MATRICES , 2002 .

[32]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[33]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[34]  Rachid Deriche,et al.  Constrained Flows of Matrix-Valued Functions: Application to Diffusion Tensor Regularization , 2002, ECCV.

[35]  P. Crouch,et al.  Numerical integration of ordinary differential equations on manifolds , 1993 .

[36]  Simon R. Arridge,et al.  A Regularization Scheme for Diffusion Tensor Magnetic Resonance Images , 2001, IPMI.

[37]  Guillermo Sapiro,et al.  Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.