The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks

The formation of planetesimals, the kilometer-sized planetary precursors, is still a puzzling process. Considerable progress has been made over the past years in the physical description of the first stages of planetesimal formation, owing to extensive laboratory work. This review examines the experimental achievements and puts them into the context of the dust processes in protoplanetary disks. It has become clear that planetesimal formation starts with the growth of fractal dust aggregates, followed by compaction processes. As the dust-aggregate sizes increase, the mean collision velocity also increases, leading to the stalling of the growth and possibly to fragmentation, once the dust aggregates have reached decimeter sizes. A multitude of hypotheses for the further growth have been proposed, such as very sticky materials, secondary collision processes, enhanced growth at the snow line, or cumulative dust effects with gravitational instability. We will also critically review these ideas.

[1]  T. Henning,et al.  THE BROWNIAN MOTION OF DUST PARTICLES IN THE SOLAR NEBULA : AN EXPERIMENTAL APPROACH TO THE PROBLEM OF PRE-PLANETARY DUST AGGREGATION , 1996 .

[2]  J. Colwell,et al.  Aerodynamical sticking of dust aggregates. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  L. Hartmann,et al.  Toward Planetesimals in the Disk around TW Hydrae: 3.5 Centimeter Dust Emission , 2005, astro-ph/0506644.

[4]  D. Sutherland,et al.  Comments on Vold's simulation of floc formation , 1966 .

[5]  J. Blum,et al.  The Physics of Protoplanetesimal Dust Agglomerates. II. Low-Velocity Collision Properties , 2007, 0711.2148.

[6]  G. Wurm,et al.  Growth of planetesimals by impacts at ∼25 m/s , 2005 .

[7]  J. Nuth,et al.  Magnetically Enhanced Coagulation of Very Small Iron Grains: A Correction of the Enhancement Factor Due to Dipole-Dipole Interactions , 1995 .

[8]  W. Hartmann Planet formation - Mechanism of early growth , 1978 .

[9]  SCUBA observations of dust around Lindroos stars: evidence for a substantial submillimetre disc population , 2003, astro-ph/0303114.

[10]  K. Glassmeier,et al.  Accretional Remanence of Magnetized Dust in the Solar Nebula , 2000 .

[11]  H. Takeda,et al.  Were planetesimals formed by dust accretion in the solar nebula? , 2003 .

[12]  K. Supulver,et al.  Energy Loss and Sticking Mechanisms in Particle Aggregation in Planetesimal Formation , 1996 .

[13]  P. Armitage,et al.  Dust dynamics during protoplanetary disc clearing , 2007 .

[14]  J. Blum,et al.  Experiments on Sticking, Restructuring, and Fragmentation of Preplanetary Dust Aggregates , 2000 .

[15]  H. Takeda,et al.  Does the gas flow through a porous dust aggregate help its growth in a protoplanetary disk , 2005 .

[16]  Koji Wada,et al.  Numerical Simulation of Dust Aggregate Collisions. I. Compression and Disruption of Two-Dimensional Aggregates , 2007 .

[17]  J. Mayo Greenberg,et al.  In Dust We Trust: An Overview of Observations and Theories of Interstellar Dust , 2002 .

[18]  CRITICAL PROTOPLANETARY CORE MASSES IN PROTOPLANETARY DISKS AND THE FORMATION OF SHORT-PERIOD GIANT PLANETS , 1999, astro-ph/9903310.

[19]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[20]  J. Blum,et al.  Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. , 2004, Physical review letters.

[21]  S. Weidenschilling Can Gravitational Instability Form Planetesimals , 1995 .

[22]  G. Wurm,et al.  Eolian Erosion of Dusty Bodies in Protoplanetary Disks , 2006 .

[23]  Willy Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004 .

[24]  Paul Meakin,et al.  Collisions between point masses and fractal aggregates , 1989 .

[25]  Oliver Krauss,et al.  Impacts into weak dust targets under microgravity and the formation of planetesimals , 2007 .

[26]  K. Keil,et al.  Protostars and Planets V , 2007 .

[27]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  A. Tielens,et al.  Dust coagulation in protoplanetary disks: porosity matters , 2006, astro-ph/0610030.

[29]  Th. Henning,et al.  Large dust particles in disks around T Tauri stars , 2006 .

[30]  Alexander G. G. M. Tielens,et al.  The Physics of Dust Coagulation and the Structure of Dust Aggregates in Space , 1997 .

[31]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[32]  Chandra Study of the Cepheus B Star-forming Region: Stellar Populations and the Initial Mass Function , 2006, astro-ph/0601405.

[33]  H. Gail,et al.  Radial mixing in protoplanetary accretion disks. V. Models with different element mixtures , 2003 .

[34]  J. Colwell Low velocity impacts into dust: results from the COLLIDE-2 microgravity experiment , 2003 .

[35]  J. Blum,et al.  Experimental Investigations on Aggregate-Aggregate Collisions in the Early Solar Nebula , 1993 .

[36]  L. Hartmann,et al.  The Truncated Disk of CoKu Tau/4 , 2004, astro-ph/0411522.

[37]  D. Kaplan,et al.  A debris disk around an isolated young neutron star , 2006, Nature.

[38]  T. Henning,et al.  Experiments on Collisional Grain Charging of Micron-sized Preplanetary Dust , 2000 .

[39]  J. Blum,et al.  The Physics of Protoplanetesimal Dust Agglomerates. I. Mechanical Properties and Relations to Primitive Bodies in the Solar System , 2006 .

[40]  Formation of Giant Planets by Concurrent Accretion of Solids and Gas inside an Anticyclonic Vortex , 2005, astro-ph/0510479.

[41]  J. Blum,et al.  First results from the cosmic dust aggregation experiment codag , 2002 .

[42]  Hans-Jürgen Butt,et al.  Adhesion and Friction Forces between Spherical Micrometer-Sized Particles , 1999 .

[43]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[44]  S. Sirono Conditions for collisional growth of a grain aggregate , 2004 .

[45]  H. Nakano,et al.  Rapid Growth of Asteroids Owing to Very Sticky Interstellar Organic Grains , 2002 .

[46]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[47]  S. Weidenschilling,et al.  Dust to planetesimals: Settling and coagulation in the solar nebula , 1980 .

[48]  C. Schafer,et al.  Collisions between equal-sized ice grain agglomerates , 2007, 0705.2672.

[49]  Y. Alibert,et al.  The photophoretic sweeping of dust in transient protoplanetary disks , 2012 .

[50]  C. Dominik,et al.  Magnetic aggregationII. Laboratory and microgravity experiments , 2003 .

[51]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[52]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[53]  Magnetically enhanced coagulation of very small iron grains. , 1994, Icarus.

[54]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[55]  D. Lin,et al.  Coagulation of particles in Saturn's rings: Measurements of the cohesive force of water frost , 1991 .

[56]  T. Henning,et al.  N-Particle-Simulations of Dust Growth: I. Growth Driven by Brownian Motion , 1999 .

[57]  D. Lin,et al.  Grain Retention and Formation of Planetesimals near the Snow Line in MRI-driven Turbulent Protoplanetary Disks , 2007, 0706.1272.

[58]  D. Lin,et al.  Gap Formation in Protoplanetary Disks , 1996 .

[59]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[60]  T. Henning,et al.  Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks , 2007, 0711.2192.

[61]  G. Morfill,et al.  Coagulation of charged microparticles in neutral gas and charge-induced gel transitions. , 2002, Physical review letters.

[62]  E. Scott,et al.  Thermal Processing of Silicate Dust in the Solar Nebula: Clues from Primitive Chondrite Matrices , 2005, astro-ph/0501067.

[63]  The photoevaporation of discs around young stars in massive clusters , 2007, astro-ph/0702112.

[64]  Alessandro Morbidelli,et al.  Iron meteorites as remnants of planetesimals formed in the terrestrial planet region , 2006, Nature.

[65]  C. Dominik,et al.  Magnetic Aggregation: Dynamics and Numerical Modeling , 2002 .

[66]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[67]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[68]  Stefan Bruns,et al.  Measurement of the translational and rotational Brownian motion of individual particles in a rarefied gas. , 2006, Physical review letters.

[69]  Andrew N. Youdin,et al.  Streaming Instabilities in Protoplanetary Disks , 2004, astro-ph/0409263.

[70]  S. Weidenschilling,et al.  The Origin of Comets in the Solar Nebula: A Unified Model , 1997 .

[71]  JOHN S. Lewis Physics And Chemistry Of The Solar System , 1995 .

[72]  J. Colwell,et al.  Low-Velocity Microgravity Impact Experiments into Simulated Regolith , 1999 .

[73]  Peter F. Arndt,et al.  Properties of Interplanetary Dust: Information from Collected Samples , 2001 .

[74]  Dispersion in the lifetime and accretion rate of T Tauri discs , 2003, astro-ph/0303343.

[75]  T. Henning,et al.  Analogous Experiments on the Stickiness of Micron-sized Preplanetary Dust , 2000 .

[76]  Accretion in protoplanetary disks : The imprint of core properties , 2006, astro-ph/0605336.

[77]  J. Wood Pressure and Temperature Profiles in the Solar Nebula , 2000 .

[78]  T. Henning,et al.  Dust Sedimentation and Self-sustained Kelvin-Helmholtz Turbulence in Protoplanetary Disk Midplanes , 2005, astro-ph/0512272.

[79]  J. Blum,et al.  Sticking efficiency of nanoparticles in high-velocity collisions with various target materials , 2006 .

[80]  T Henning,et al.  Growth and form of planetary seedlings: results from a microgravity aggregation experiment. , 2000, Physical review letters.

[81]  A. Johansen,et al.  Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration , 2007, astro-ph/0702626.

[82]  Benjamin F. Lane,et al.  New insights on the AU-scale circumstellar structure of FU Orionis , 2005 .

[83]  J. Blum,et al.  Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment. , 2004, Physical review letters.

[84]  H. Gail Radial mixing in protoplanetary accretion disks IV. Metamorphosis of the silicate dust complex , 2004 .

[85]  T. Poppe Sintering of highly porous silica-particle samples: analogues of early Solar-System aggregates , 2003 .

[86]  G. Wurm,et al.  On the Importance of Gas Flow through Porous Bodies for the Formation of Planetesimals , 2004 .

[87]  M. Schnaiter,et al.  Coagulation as Unifying Element for Interstellar Polarization , 2002 .

[88]  M. J. Vold,et al.  A numerical approach to the problem of sediment volume , 1959 .

[89]  K. Supulver,et al.  THE STICKING PROPERTIES OF WATER FROST PRODUCED UNDER VARIOUS AMBIENT CONDITIONS , 1997 .

[90]  C. Dominik,et al.  The influence of grain rotation on the structure of dust aggregates , 2006 .

[91]  M. J. Vold Computer simulation of floc formation in a colloidal suspension , 1963 .

[92]  Disk temperature variations and effects on the snow line in the presence of small protoplanets , 2004, astro-ph/0404590.

[93]  J. Blum,et al.  Experiments on Preplanetary Dust Aggregation , 1998 .

[94]  J. Colwell,et al.  A New Mechanism Relevant to the Formation of Planetesimals in the Solar Nebula , 2001 .

[95]  H. Haack,et al.  Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions , 2004, Nature.

[96]  J. Israelachvili Intermolecular and surface forces , 1985 .

[97]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[98]  Oliver Krauss,et al.  Ejection of dust by elastic waves in collisions between millimeter- and centimeter-sized dust aggregates at 16.5 to 37.5 m/s impact velocities. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  M. Cintala,et al.  Ejecta from impacts at 0.2–2.3 m/s in low gravity , 2008 .