Ultrafast zero-bias photocurrent in GeS nanosheets

We have observed emission of terahertz radiation from photoexcited GeS nanosheets without external bias. We attribute the origin of terahertz pulse emission to the shift current resulting from inversion symmetry breaking in ferroelectric single- or few-layer GeS nanosheets. We find that the direction of the shift current, and the corresponding polarity of the emitted THz pulses is determined by the spontaneous polarization in the ferroelectric GeS nanosheets. Experimental observation of zero-bias photocurrents puts GeS nanosheets forth as a promising candidate material for applications in third generation photovoltaics based on shift current, or bulk photovoltaic effect.

[1]  Xiao Cheng Zeng,et al.  Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues. , 2016, Nano letters.

[2]  Joel E Moore,et al.  Design principles for shift current photovoltaics , 2015, Nature Communications.

[3]  M. Bieler,et al.  THz Generation From Resonant Excitation of Semiconductor Nanostructures: Investigation of Second-Order Nonlinear Optical Effects , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  L. Tan,et al.  Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond , 2016 .

[5]  Wei Kang,et al.  Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides. , 2016, Physical review letters.

[6]  Tao Chen,et al.  Determining layer number of two-dimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrates , 2016, Nanotechnology.

[7]  Dong Wang,et al.  Determination of the thickness of two-dimensional transition-metal dichalcogenide by the Raman intensity of the substrate , 2016 .

[8]  Young In Jhon,et al.  Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. , 2016, Nanoscale.

[9]  F. Zheng,et al.  First-principles calculation of the bulk photovoltaic effect in the polar compounds LiAsS2, LiAsSe2, and NaAsSe2. , 2014, The Journal of chemical physics.

[10]  M. Koch,et al.  Terahertz spectroscopy and imaging – Modern techniques and applications , 2011 .

[11]  Fan Zheng,et al.  First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3NH3PbI(3-x)Cl(x). , 2015, The journal of physical chemistry letters.

[12]  Alessia Polemi,et al.  Erratum: Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator , 2016, Nature Photonics.

[13]  Charles A. Schmuttenmaer,et al.  Effect of spin-polarized electrons on terahertz emission from photoexcited GaAs , 2009 .

[14]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[15]  Kateryna Kushnir,et al.  Ultrafast Zero-Bias Photocurrent in GeS Nanosheets: Promise for Photovoltaics , 2017 .

[16]  M. Joseph,et al.  Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials , 2016 .

[17]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[18]  J. Sipe,et al.  Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap , 2006 .

[19]  Daniel Wolverson,et al.  Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes , 2016 .

[20]  S. Young,et al.  First principles calculation of the shift current photovoltaic effect in ferroelectrics. , 2012, Physical review letters.

[21]  Aron Walsh,et al.  Ferroelectric materials for solar energy conversion: photoferroics revisited , 2014, 1412.6929.

[22]  Junichiro Kono,et al.  Generation of terahertz radiation by optical excitation of aligned carbon nanotubes. , 2015, Nano letters.

[23]  Dong-Hun Chae,et al.  Coherent Lattice Vibrations in Mono- and Few-Layer WSe2. , 2016, ACS nano.