Cornell Summer School in Probability
暂无分享,去创建一个
[1] Mark C. Wilson,et al. Asymptotic expansions of oscillatory integrals with complex phase , 2009, 0903.3585.
[2] Michael Lugo,et al. Profiles of Permutations , 2009, Electron. J. Comb..
[3] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[4] Seth Sullivant,et al. Lectures on Algebraic Statistics , 2008 .
[5] Mark C. Wilson,et al. Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions , 2005, SIAM Rev..
[6] Mark C. Wilson,et al. Asymptotics of Multivariate Sequences II: Multiple Points of the Singular Variety , 2004, Combinatorics, Probability and Computing.
[7] Mireille Bousquet-Mélou,et al. Generating functions for generating trees , 2002, Discret. Math..
[8] Mireille Bousquet-Mélou,et al. Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..
[9] J. Propp,et al. Random Domino Tilings and the Arctic Circle Theorem , 1998, math/9801068.
[10] A. Odlyzko. Asymptotic enumeration methods , 1996 .
[11] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[12] G. Lawler. Intersections of random walks , 1991 .
[13] Philippe Flajolet,et al. Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..
[14] J. T. Chayes,et al. Ornstein-Zernike behavior for self-avoiding walks at all noncritical temperatures , 1986 .
[15] Alexander Varchenko,et al. Newton polyhedra and estimation of oscillating integrals , 1976 .
[16] L. Hörmander,et al. An introduction to complex analysis in several variables , 1973 .
[17] M. Atiyah,et al. Lacunas for hyperbolic differential operators with constant coefficients I , 1970 .
[18] George Polya,et al. On the number of certain lattice polygons , 1969 .
[19] G. Shilov,et al. Generalized Functions, Volume 1: Properties and Operations , 1967 .
[20] W. Hayman. A Generalisation of Stirling's Formula. , 1956 .
[21] W. Feller. An Introduction to Probability Theory and Its Applications , 1959 .