Vertex and Tree Arboricities of Graphs

This paper studies the following variations of arboricity of graphs. The vertex (respectively, tree) arboricity of a graph G is the minimum number va(G) (respectively, ta(G)) of subsets into which the vertices of G can be partitioned so that each subset induces a forest (respectively, tree). This paper studies the vertex and the tree arboricities on various classes of graphs for exact values, algorithms, bounds, hamiltonicity and NP-completeness. The graphs investigated in this paper include block-cactus graphs, series-parallel graphs, cographs and planar graphs.

[1]  Gerd Wegner Note on a paper of B. Grünbaum on acyclic colorings , 1973 .

[2]  K. S. Poh On the linear vertex-arboricity of a planar graph , 1990, J. Graph Theory.

[3]  Gary Chartrand,et al.  The point-arboricity of a graph , 1968 .

[4]  Jianfang Wang,et al.  On linear vertex-arboricity of complementary graphs , 1994, J. Graph Theory.

[5]  Makoto Matsumoto,et al.  Bounds for the vertex linear arboricity , 1990, J. Graph Theory.

[6]  Hudson V. Kronk,et al.  An Analogue to the Heawood Map‐Colouring Problem , 1969 .

[7]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[8]  Paul A. Catlin Brooks' graph-coloring theorem and the independence number , 1979, J. Comb. Theory, Ser. B.

[9]  Hong-Jian Lai,et al.  Vertex arboricity and maximum degree , 1995, Discret. Math..

[10]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[11]  Xin He,et al.  Parallel Complexity of Partitioning a Planar Graph Into Vertex-induced Forests , 1996, Discret. Appl. Math..

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Wayne Goddard,et al.  Acyclic colorings of planar graphs , 1991, Discret. Math..

[14]  Sherman K. Stein,et al.  $B$-sets and planar maps. , 1971 .

[15]  Susmita Sur-Kolay,et al.  Efficient Algorithms for Vertex Arboricity of Planar Graphs , 1995, FSTTCS.

[16]  Zhi-Zhong Chen,et al.  Efficient Algorithms for Acyclic Colorings of Graphs , 1999, Theor. Comput. Sci..

[17]  G. Chartrand,et al.  The Point‐Arboricity of Planar Graphs , 1969 .

[18]  John Mitchem A short proof of Catlin's extension of Brooks' theorem , 1978, Discret. Math..

[19]  Hung-Lin Fu,et al.  Linear k-arboricities on trees , 2000, Discret. Appl. Math..

[20]  Gerard J. Chang,et al.  ALGORITHMIC ASPECTS OF LINEAR k-ARBORICITY , 1999 .

[21]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[22]  John Mitchem,et al.  Critical Point‐Arboritic Graphs , 1975 .

[23]  S. L. Hakimi,et al.  A Note on the Vertex Arboricity of a Graph , 1989, SIAM J. Discret. Math..

[24]  Robert J. Cimikowski Finding Hamiltonian Cycles in Certain Planar Graphs , 1990, Inf. Process. Lett..

[25]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..