Numerically Stabilizing Ill-Posed Moving Surface Problems Through Heat-Rate Sensors

Nomenclature B2 M = deterministic bias, Eq. (10c) b = constant in Gaussian function, s, Eq. (7) cp = heat capacity, kJ/(kg◦C) I j (z) = j th modified Bessel function K = convolution kernel, Eq. (1c) k = thermal conductivity, W/(m◦C) M = number of data points Ma = convolution kernel, Eq. (5a) Mb = convolution kernel, Eq. (5b) N = convolution kernel, Eq. (6b) q ′′ = dimensional heat flux, W/m2 q ′′ s = surface heat flux, W/m 2 q ′′ 0 = maximum Gaussian heat-flux value, W/m 2 T = temperature, ◦C Ti = discrete temperature, ◦C Ts = surface temperature, ◦C T0 = initial temperature, ◦C t = time, s tmax = maximum time, s t0 = dummy variable, s u = velocity of moving surface, m/s v = dummy variable, Eq. (3) x = spatial variable, m z = dummy argument α = thermal diffusivity, m2/s β = constant, Eq. (1c) i = noise factor, Eqs. (8a) and (8b) θ = temperature difference, Ts − T0, ◦C λ = constant, Eq. (1c) ρ = density, kg/m3 σ = constant, Eq. (7) σ 2 M = variance, Eq. (10d)

[1]  V. Novozhilov,et al.  The relationship between the local temperature and the local heat flux within a one-dimensional semi-infinite domain of heat wave propagation , 2003 .

[2]  Motivation for the Development of Heating/Cooling Rate and Heat Flux Rate Sensors for Engineering Applications , 2004 .

[3]  R. Kress Linear Integral Equations , 1989 .

[4]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[5]  Jay I. Frankel Generalizing the method of Kulish to one-dimensional unsteady heat conducting slabs , 2006 .

[6]  S. Penner,et al.  Radiation and Reentry , 2019 .

[7]  W. Cook,et al.  Reduction of data from thin-film heat-transfer gages - A concise numerical technique. , 1966 .

[8]  J. L. Lage,et al.  Fractional-Diffusion Solutions for Transient Local Temperature and Heat Flux , 2000 .

[9]  K. Taira,et al.  In-Phase Error Estimation of Experimental Data and Optimal First Derivatives , 2003 .

[10]  Jay I. Frankel,et al.  Stabilization of Ill-Posed Problems Through Thermal Rate Sensors , 2006 .

[11]  M. Bôcher,et al.  An Introduction to the Study of Integral Equations , 1909, Nature.

[12]  Otmar Scherzer,et al.  Inverse Problems Light: Numerical Differentiation , 2001, Am. Math. Mon..

[13]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .

[14]  M. Ohring Chapter 6 – Characterization of Thin Films , 1991 .

[15]  V. Novozhilov,et al.  Integral Equation for the Heat Transfer with the Moving Boundary , 2003 .

[16]  Charles W. Groetsch,et al.  Differentiation of approximately specified functions , 1991 .

[17]  J. L. Lage,et al.  A Fractional-Diffusion Theory for Calculating Thermal Properties of Thin Films From Surface Transient Thermoreflectance Measurements , 2001 .

[18]  Jay I. Frankel Regularization of inverse heat conduction by combination of rate sensor analysis and analytic continuation , 2007 .

[19]  W. Cook,et al.  Determination of heat-transfer rates from transient surface temperature measurements , 1970 .

[20]  A. Nowak,et al.  Inverse thermal problems , 1995 .