Atomically imprinted graphene plasmonic cavities

general strategy to atomically imprint low-loss graphene plasmonic structures oxidation-activated charge transfer (OCT). graphene with a monolayer of WSe 2 , which is subsequently oxidized into high work-function WO x to activate charge transfer. Nano-infrared imaging reveals low-loss plasmon polaritons at the WO x /graphene interface. We insert WSe 2 spacers to precisely control the OCT-induced density and achieve a near-intrinsic quality of Finally, we imprint laterally abrupt doping with single-digit nanoscale precision via programmable OCT. we appealing elusive resonators based on free-standing graphene encapsulated in WO x Our results open avenues for novel quantum photonic architectures incorporating two-dimensional materials.

[1]  Zhipei Sun,et al.  Active control of micrometer plasmon propagation in suspended graphene , 2021, Nature Communications.

[2]  C. Qiu,et al.  Interface nano-optics with van der Waals polaritons , 2021, Nature.

[3]  Zachary A. Lamport,et al.  Achieving high carrier density and high mobility in graphene using monolayer tungsten oxyselenide , 2021 .

[4]  G. Shvets,et al.  Bound in the continuum modes in indirectly-patterned hyperbolic media , 2021, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[5]  J. Faist,et al.  Engineering quantum materials with chiral optical cavities , 2020, Nature Materials.

[6]  Bjarke S. Jessen,et al.  Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl3 Interfaces , 2020, Nano letters.

[7]  F. J. García de abajo,et al.  Nonlinear Graphene Nanoplasmonics. , 2019, Accounts of chemical research.

[8]  Assaf Y Anderson,et al.  Universal Work Function of Metal Oxides Exposed to Air , 2019, Advanced Materials Interfaces.

[9]  G. Shvets,et al.  Photonic crystal for graphene plasmons , 2019, Nature Communications.

[10]  N. Xu,et al.  A mid-infrared biaxial hyperbolic van der Waals crystal , 2018, Science Advances.

[11]  Natalia M. Litchinitser,et al.  Robust topologically protected transport in photonic crystals at telecommunication wavelengths , 2018, Nature Nanotechnology.

[12]  J. Hone,et al.  Fundamental limits to graphene plasmonics , 2018, Nature.

[13]  B. Rech,et al.  Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells , 2016 .

[14]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[15]  Amaia Pesquera,et al.  Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators , 2016, Nature Photonics.

[16]  S. Larentis,et al.  Band Alignment in WSe2-Graphene Heterostructures. , 2015, ACS nano.

[17]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[18]  Hasan Sahin,et al.  Monolayers of MoS2 as an oxidation protective nanocoating material , 2014 .

[19]  S. Sarma,et al.  Plasmon anomaly in the dynamical optical conductivity of graphene , 2013, 1305.4940.

[20]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[21]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[22]  C. N. Lau,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[23]  Da-Ren Chen,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2009, 0912.0078.

[24]  K. Vahala,et al.  High-Q surface-plasmon-polariton whispering-gallery microcavity , 2009, Nature.

[25]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[26]  Y. Kivshar,et al.  Fano resonance in nanoscale structures , 2009 .

[27]  M. Fogler,et al.  Nonlinear screening and ballistic transport in a graphene p-n junction. , 2007, Physical review letters.

[28]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[29]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.