Atomically imprinted graphene plasmonic cavities
暂无分享,去创建一个
A. Millis | Xiaodong Xu | P. Schuck | J. Hone | S. Chae | A. Zangiabadi | A. Mcleod | Ankur Nipane | M. Choi | C. Dean | D. Basov | Zhiyuan Sun | Anjaly Rajendran | Song Liu | A. Sternbach | Y. Shao | Francesco L Ruta | L. Xiong | Yinan Dong | Brian S Y Kim | Brian S. Y. Kim | F. Ruta
[1] Zhipei Sun,et al. Active control of micrometer plasmon propagation in suspended graphene , 2021, Nature Communications.
[2] C. Qiu,et al. Interface nano-optics with van der Waals polaritons , 2021, Nature.
[3] Zachary A. Lamport,et al. Achieving high carrier density and high mobility in graphene using monolayer tungsten oxyselenide , 2021 .
[4] G. Shvets,et al. Bound in the continuum modes in indirectly-patterned hyperbolic media , 2021, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).
[5] J. Faist,et al. Engineering quantum materials with chiral optical cavities , 2020, Nature Materials.
[6] Bjarke S. Jessen,et al. Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl3 Interfaces , 2020, Nano letters.
[7] F. J. García de abajo,et al. Nonlinear Graphene Nanoplasmonics. , 2019, Accounts of chemical research.
[8] Assaf Y Anderson,et al. Universal Work Function of Metal Oxides Exposed to Air , 2019, Advanced Materials Interfaces.
[9] G. Shvets,et al. Photonic crystal for graphene plasmons , 2019, Nature Communications.
[10] N. Xu,et al. A mid-infrared biaxial hyperbolic van der Waals crystal , 2018, Science Advances.
[11] Natalia M. Litchinitser,et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths , 2018, Nature Nanotechnology.
[12] J. Hone,et al. Fundamental limits to graphene plasmonics , 2018, Nature.
[13] B. Rech,et al. Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells , 2016 .
[14] D. N. Basov,et al. Polaritons in van der Waals materials , 2016, Science.
[15] Amaia Pesquera,et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators , 2016, Nature Photonics.
[16] S. Larentis,et al. Band Alignment in WSe2-Graphene Heterostructures. , 2015, ACS nano.
[17] G. Vignale,et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.
[18] Hasan Sahin,et al. Monolayers of MoS2 as an oxidation protective nanocoating material , 2014 .
[19] S. Sarma,et al. Plasmon anomaly in the dynamical optical conductivity of graphene , 2013, 1305.4940.
[20] Min Seok Jang,et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.
[21] F. Guinea,et al. Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.
[22] C. N. Lau,et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.
[23] Da-Ren Chen,et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2009, 0912.0078.
[24] K. Vahala,et al. High-Q surface-plasmon-polariton whispering-gallery microcavity , 2009, Nature.
[25] Kerry Vahala,et al. Cavity opto-mechanics. , 2007, Optics express.
[26] Y. Kivshar,et al. Fano resonance in nanoscale structures , 2009 .
[27] M. Fogler,et al. Nonlinear screening and ballistic transport in a graphene p-n junction. , 2007, Physical review letters.
[28] Nathan S. Lewis,et al. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .
[29] G. Rupper,et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.