Covering Intersecting Bi-set Families under Matroid Constraints

Edmonds's fundamental theorem on arborescences in [J. Edmonds, Edge-disjoint branchings, in Combinatorial Algorithms, Courant Comput. Sci. Sympos. 9, Algorithmics Press, New York, 1973, pp. 91--96] characterizes the existence of $k$ pairwise arc-disjoint spanning arborescences with the same root in a directed graph. In [L. Lovasz, J. Combinatorial Theory Ser. B, 21 (1976), pp. 96--103], Lovasz gave an elegant alternative proof which became the basis of many extensions of Edmonds's result. In this paper, we use a modification of Lovasz's method to prove a theorem on covering intersecting bi-set families under matroid constraints. Our result can be considered as an extension of previous results on packing arborescences. We also investigate the algorithmic aspects of the problem and present a polynomial-time algorithm for solving the corresponding optimization problem.

[1]  László Szegö On covering intersecting set-systems by digraphs , 2001, Discret. Math..

[2]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[3]  A. Frank Connections in Combinatorial Optimization , 2011 .

[4]  D. R. Fulkerson,et al.  On edge-disjoint branchings , 1976, Networks.

[5]  Satoru Fujishige A note on disjoint arborescences , 2010, Comb..

[6]  Shin-ichi Tanigawa,et al.  Rooted-Tree Decompositions with Matroid Constraints and the Infinitesimal Rigidity of Frameworks with Boundaries , 2011, SIAM J. Discret. Math..

[7]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[8]  Olivier Durand de Gevigney,et al.  Basic Packing of Arborescences , 2012, 1207.1985.

[9]  András Frank,et al.  Rooted k-connections in digraphs , 2009, Discret. Appl. Math..

[10]  Zoltán Szigeti,et al.  Matroid-Based Packing of Arborescences , 2013, SIAM J. Discret. Math..

[11]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[12]  S. Thomas McCormick,et al.  Submodular Function Minimization , 2005 .

[13]  András Frank,et al.  Variations for Lovász’ Submodular Ideas , 2008 .

[14]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[15]  Atsushi Takizawa,et al.  Arc-disjoint in-trees in directed graphs , 2008, SODA '08.

[16]  Csaba Király,et al.  On Maximal Independent Arborescence Packing , 2016, SIAM J. Discret. Math..

[17]  László Lovász,et al.  On two minimax theorems in graph , 1976, J. Comb. Theory, Ser. B.