Defective α‐tectorin may involve tectorial membrane in familial Meniere disease

[1]  E. Capriotti,et al.  Predicting protein stability changes upon single-point mutation: a thorough comparison of the available tools on a new dataset , 2022, Briefings Bioinform..

[2]  J. Lopez-Escamez,et al.  Rare coding variants involving MYO7A and other genes encoding stereocilia link proteins in familial meniere disease , 2021, Hearing Research.

[3]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[4]  Carlos Loucera,et al.  CSVS, a crowdsourcing database of the Spanish population genetic variability , 2020, Nucleic Acids Res..

[5]  Minghui Li,et al.  PremPS: Predicting the impact of missense mutations on protein stability , 2020, PLoS Comput. Biol..

[6]  J. Lopez-Escamez,et al.  Systematic Review of Sequencing Studies and Gene Expression Profiling in Familial Meniere Disease , 2020, Genes.

[7]  Douglas E. V. Pires,et al.  DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations , 2020, Protein science : a publication of the Protein Society.

[8]  Torsten Schwede,et al.  QMEANDisCo—distance constraints applied on model quality estimation , 2019, Bioinform..

[9]  A. Wright,et al.  Ultrastructural defects in stereocilia and tectorial membrane in aging mouse and human cochleae , 2019, Journal of neuroscience research.

[10]  J. A. Kim,et al.  The release of surface-anchored α-tectorin, an apical extracellular matrix protein, mediates tectorial membrane organization , 2019, Science Advances.

[11]  K. Sugahara,et al.  The Prevalence and Clinical Characteristics of TECTA-Associated Autosomal Dominant Hearing Loss , 2019, Genes.

[12]  Xiaogen Zhou,et al.  Assembling multidomain protein structures through analogous global structural alignments , 2019, Proceedings of the National Academy of Sciences.

[13]  J. Choi,et al.  The TECTA mutation R1890C is identified as one of the causes of genetic hearing loss: a case report , 2019, BMC Medical Genetics.

[14]  A. Fridberger,et al.  Control of hearing sensitivity by tectorial membrane calcium , 2019, Proceedings of the National Academy of Sciences.

[15]  J. Lopez-Escamez,et al.  Recommendations on Collecting and Storing Samples for Genetic Studies in Hearing and Tinnitus Research , 2019, Ear and hearing.

[16]  Jesper Eisfeldt,et al.  Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants , 2018, bioRxiv.

[17]  Alex Chapin,et al.  Expert Specification of the ACMG/AMP Variant Interpretation Guidelines for Genetic Hearing Loss , 2018, bioRxiv.

[18]  A. Xia,et al.  Osmotic stabilization prevents cochlear synaptopathy after blast trauma , 2018, Proceedings of the National Academy of Sciences.

[19]  K. Kahrizi,et al.  Old gene, new phenotype: splice-altering variants in CEACAM16 cause recessive non-syndromic hearing impairment , 2018, Journal of Medical Genetics.

[20]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[21]  R. Goodyear,et al.  Structure, Function, and Development of the Tectorial Membrane: An Extracellular Matrix Essential for Hearing. , 2018, Current topics in developmental biology.

[22]  Yu-Feng Lin,et al.  MIB: Metal Ion-Binding Site Prediction and Docking Server , 2016, J. Chem. Inf. Model..

[23]  Peter Lackner,et al.  MAESTROweb: a web server for structure-based protein stability prediction , 2016, Bioinform..

[24]  M. Strupp,et al.  Diagnostic criteria for Menière's disease. , 2015, Journal of vestibular research : equilibrium & orientation.

[25]  Qi Zhao,et al.  IBS: an illustrator for the presentation and visualization of biological sequences , 2015, Bioinform..

[26]  Bale,et al.  Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology , 2015, Genetics in Medicine.

[27]  Thomas L Casavant,et al.  Utilizing ethnic-specific differences in minor allele frequency to recategorize reported pathogenic deafness variants. , 2014, American journal of human genetics.

[28]  Souvik Naskar,et al.  Loss of the Tectorial Membrane Protein CEACAM16 Enhances Spontaneous, Stimulus-Frequency, and Transiently Evoked Otoacoustic Emissions , 2014, The Journal of Neuroscience.

[29]  R. Goodyear,et al.  Three deaf mice: mouse models for TECTA-based human hereditary deafness reveal domain-specific structural phenotypes in the tectorial membrane , 2013, Human molecular genetics.

[30]  Douglas E. V. Pires,et al.  mCSM: predicting the effects of mutations in proteins using graph-based signatures , 2013, Bioinform..

[31]  Juan I. Young,et al.  Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss. , 2012, American journal of human genetics.

[32]  A. Beynon,et al.  Mutations of the gene encoding otogelin are a cause of autosomal-recessive nonsyndromic moderate hearing impairment. , 2012, American journal of human genetics.

[33]  L. Rüttiger,et al.  Loss of Mammal-specific Tectorial Membrane Component Carcinoembryonic Antigen Cell Adhesion Molecule 16 (CEACAM16) Leads to Hearing Impairment at Low and High Frequencies* , 2012, The Journal of Biological Chemistry.

[34]  Adam P. DeLuca,et al.  DFNA8/12 caused by TECTA mutations is the most identified subtype of nonsyndromic autosomal dominant hearing loss , 2011, Human mutation.

[35]  Todd E. Scheetz,et al.  Carcinoembryonic antigen-related cell adhesion molecule 16 interacts with α-tectorin and is mutated in autosomal dominant hearing loss (DFNA4) , 2011, Proceedings of the National Academy of Sciences.

[36]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[37]  Simon S. Gao,et al.  Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation , 2010, Disease Models & Mechanisms.

[38]  I. Russell,et al.  The tectorial membrane: one slice of a complex cochlear sandwich , 2008, Current opinion in otolaryngology & head and neck surgery.

[39]  E. Egelman,et al.  Assembly of Weibel–Palade body-like tubules from N-terminal domains of von Willebrand factor , 2008, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Narayanan Eswar,et al.  Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.

[41]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[42]  M. Michael Gromiha,et al.  CUPSAT: prediction of protein stability upon point mutations , 2006, Nucleic Acids Res..

[43]  David Baker,et al.  Protein structure prediction and analysis using the Robetta server , 2004, Nucleic Acids Res..

[44]  S. Riazuddin,et al.  Distinctive audiometric profile associated with DFNB21 alleles of TECTA , 2003, Journal of medical genetics.

[45]  Manfred Kössl,et al.  A Targeted Deletion in α-Tectorin Reveals that the Tectorial Membrane Is Required for the Gain and Timing of Cochlear Feedback , 2000, Neuron.

[46]  G. Richardson,et al.  Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development , 1999, The Journal of comparative neurology.

[47]  J. Beckmann,et al.  An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. , 1999, Human molecular genetics.

[48]  L. Collet,et al.  Mutation in the zonadhesin-like domain of α-tectorin associated with autosomal dominant non-syndromic hearing loss , 1999, European Journal of Human Genetics.

[49]  U. Pettersson,et al.  Alpha-tectorin involvement in hearing disabilities: one gene – two phenotypes , 1999, Human Genetics.

[50]  F. E. Offeciers,et al.  Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. , 1998, Nature genetics.

[51]  G. Richardson,et al.  The Mouse Tectorins , 1997, The Journal of Biological Chemistry.

[52]  D. Eisenberg,et al.  VERIFY3D: assessment of protein models with three-dimensional profiles. , 1997, Methods in enzymology.

[53]  T. Yeates,et al.  Verification of protein structures: Patterns of nonbonded atomic interactions , 1993, Protein science : a publication of the Protein Society.