High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach

[1]  David Hardacre,et al.  High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L: Fracture behaviour and stress-based modelling , 2019, International Journal of Fatigue.

[2]  A. Fatemi,et al.  Significance of hot isostatic pressing (HIP) on multiaxial deformation and fatigue behaviors of additive manufactured Ti-6Al-4V including build orientation and surface roughness effects , 2018, International Journal of Fatigue.

[3]  Meng Zhang,et al.  Predictive models for fatigue property of laser powder bed fusion stainless steel 316L , 2018 .

[4]  Wing Kam Liu,et al.  Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing , 2018 .

[5]  T. K. Kundra,et al.  Additive Manufacturing Technologies , 2018 .

[6]  P. C. Goh,et al.  Elucidating the Relations Between Monotonic and Fatigue Properties of Laser Powder Bed Fusion Stainless Steel 316L , 2018 .

[7]  Shu Beng Tor,et al.  Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review , 2018 .

[8]  G. Nicoletto Efficient determination of influence factors in fatigue of additive manufactured metals , 2018 .

[9]  Qingqing Ding,et al.  Dislocation network in additive manufactured steel breaks strength–ductility trade-off , 2017 .

[10]  Meng Zhang,et al.  Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters , 2017 .

[11]  P J Withers,et al.  The Influence of Porosity on Fatigue Crack Initiation in Additively Manufactured Titanium Components , 2017, Scientific Reports.

[12]  Sankaran Mahadevan,et al.  Uncertainty quantification in prediction of material properties during additive manufacturing , 2017 .

[13]  Wei Chen,et al.  A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality , 2017 .

[14]  Mostafa Yakout,et al.  The selection of process parameters in additive manufacturing for aerospace alloys , 2017 .

[15]  Alaa Elwany,et al.  Accelerated process optimization for laser-based additive manufacturing by leveraging similar prior studies , 2017 .

[16]  Alaa Elwany,et al.  Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel , 2017 .

[17]  Kurosh Darvish,et al.  Reducing lack of fusion during selective laser melting of CoCrMo alloy: Effect of laser power on geometrical features of tracks , 2016 .

[18]  Yong-qiang Yang,et al.  Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts , 2016 .

[19]  Alkan Donmez,et al.  Interlaboratory Study for Nickel Alloy 625 Made by Laser Powder Bed Fusion to Quantify Mechanical Property Variability , 2016, Journal of Materials Engineering and Performance.

[20]  Nam Phan,et al.  Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research , 2016 .

[21]  Orion L. Kafka,et al.  Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support , 2016 .

[22]  G. Chryssolouris,et al.  Additive manufacturing methods and modelling approaches: a critical review , 2016 .

[23]  Y. Zhong,et al.  Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting , 2016 .

[24]  T. Mukherjee,et al.  Printability of alloys for additive manufacturing , 2016, Scientific Reports.

[25]  T. Mower,et al.  Mechanical behavior of additive manufactured, powder-bed laser-fused materials , 2016 .

[26]  Mojtaba Ahmadieh Khanesar,et al.  Fundamentals of Type-1 Fuzzy Logic Theory , 2016 .

[27]  Chor Yen Yap,et al.  Review of selective laser melting : materials and applications , 2015 .

[28]  Michal Galba,et al.  Additive Manufacturing of Metals Using Powder-Based Technology , 2015 .

[29]  Thomas Tröster,et al.  Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting , 2015, Metallurgical and Materials Transactions A.

[30]  George K. Karagiannidis,et al.  Efficient Machine Learning for Big Data: A Review , 2015, Big Data Res..

[31]  Y. Zhong,et al.  Hardened austenite steel with columnar sub-grain structure formed by laser melting , 2015 .

[32]  Johann Sienz,et al.  Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting , 2014, The International Journal of Advanced Manufacturing Technology.

[33]  Wei Qingsong,et al.  Effect of molten pool boundaries on the mechanical properties of selective laser melting parts , 2014 .

[34]  D. Gu,et al.  Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder , 2014 .

[35]  Thomas Tröster,et al.  On the fatigue properties of metals manufactured by selective laser melting — The role of ductility , 2014 .

[36]  Frank Walther,et al.  Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties , 2014 .

[37]  Konrad Wegener,et al.  Fatigue performance of additive manufactured metallic parts , 2013 .

[38]  G. Casalino,et al.  Neuro-Fuzzy Model for the Prediction and Classification of the Fused Zone Levels of Imperfections in Ti6Al4V Alloy Butt Weld , 2013 .

[39]  C. Beckermann,et al.  Effect of Porosity on Deformation, Damage, and Fracture of Cast Steel , 2013, Metallurgical and Materials Transactions A.

[40]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[41]  K. Chan,et al.  Roles of microstructure in fatigue crack initiation , 2010 .

[42]  Yusheng Shi,et al.  316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting , 2010 .

[43]  J. Kruth,et al.  A study of the microstructural evolution during selective laser melting of Ti–6Al–4V , 2010 .

[44]  N. Dowling,et al.  Mean stress effects in stress-life fatigue and the Walker equation , 2009 .

[45]  David W. Rosen,et al.  Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing , 2009 .

[46]  Anastasios P. Vassilopoulos,et al.  Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates , 2008 .

[47]  H. Ammar,et al.  Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al–Si casting alloys , 2008 .

[48]  Fi-John Chang,et al.  Adaptive neuro-fuzzy inference system for prediction of water level in reservoir , 2006 .

[49]  Seema Chopra,et al.  Identification of rules using subtractive clustering with application to fuzzy controllers , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[50]  David Bak,et al.  Rapid prototyping or rapid production? 3D printing processes move industry towards the latter , 2003 .

[51]  Madasu Hanmandlu,et al.  Structure identification of generalized adaptive neuro-fuzzy inference systems , 2003, IEEE Trans. Fuzzy Syst..

[52]  Marios K. Chryssanthopoulos,et al.  Probabilistic fatigue analysis under constant amplitude loading , 2003 .

[53]  Zujian Wang,et al.  Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries , 2003 .

[54]  Kwai S. Chan,et al.  A microstructure-based fatigue-crack-initiation model , 2003 .

[55]  Bruno Sudret,et al.  Probabilistic assessment of fatigue life including statistical uncertainties in the S-N curve , 2003 .

[56]  Y. Murakami Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions , 2002 .

[57]  M. A. Jarrah,et al.  Neuro-Fuzzy Modeling of Fatigue Life Prediction of Unidirectional Glass Fiber/Epoxy Composite Laminates , 2002 .

[58]  Neil Hopkinson,et al.  Rapid prototyping for direct manufacture , 2001 .

[59]  H. K. D. H. Bhadeshia,et al.  Neural Networks in Materials Science , 1999 .

[60]  Philippa A.S. Reed,et al.  An example of the use of neural computing techniques in materials science : the modelling of fatigue thresholds in Ni-base superalloys , 1999 .

[61]  Djc MacKay,et al.  Neural network analysis of steel plate processing , 1998 .

[62]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[63]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[64]  R. de Figueiredo,et al.  Fuzzy system design through fuzzy clustering and optimal predefuzzification , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[65]  Jyh-Shing Roger Jang,et al.  Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm , 1991, AAAI.

[66]  M. Yoo,et al.  Intergranular fracture by slip/grain boundary interaction , 1990 .

[67]  James T. P. Yao,et al.  Fuzzy logic approach in metals fatigue , 1987, Int. J. Approx. Reason..

[68]  Gitin M. Maitra,et al.  Handbook of Mechanical Design , 1985 .

[69]  M. Sugeno,et al.  Derivation of Fuzzy Control Rules from Human Operator's Control Actions , 1983 .

[70]  Toshio Mura,et al.  A Dislocation Model for Fatigue Crack Initiation , 1981 .

[71]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[72]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[73]  M. Pridantsev,et al.  Effect of manganese on the structure and properties of nonmagnetic stainless steels , 1966 .

[74]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..